Numerical modeling of a nonlinear resonant vibrometry experiment for crack imaging

Ravi Verma *#

Kevin Truyaert #

Vladislav Aleshin *

Wave Propagation and Signal Processing Research Group, Department of Physics, **KU Leuven** Kulak, 8500 Kortrijk, Belgium

* Joint International Laboratory LICS-LEMAC, Institute of Electronics, Microelectronics and Nanotechnologies, **University of Lille**, Villeneuve d'Ascq, France

Introduction

• Modeling for resonant laser vibrometry experiment for detecting damage in solids What that demonstrates qualitative agreement • Modeling makes all processes "transparent" virtual experiments, full access to simulated data etc • Modeling will allow us to estimate defects parameters from measured response and thus completes the NDT strategy

• Modeling will finally enable to make prognostics

what happens next, lifetime estimations etc

- Contact model for cracks taking into account friction original Method of Memory Diagrams (MMD)
- FEM unit for solid mechanics in materials and structures

COMSOL

Why

How

State of the art: experiment

Dozens of techniques, more than 20 years of development, examples:

Nonlinear ultrasonic phased array

vary pulse delays, focus at various spots

Nonlinear Ultrasonic Guided Wave Tomography

use a set of transducers to generate

and record pulses

Nonlinear coda wave interferometry

HF coda waves are extremely sensitive to

any changes in material

Nonlinear Frequency-Mixing Photoacoustic Imaging

generate acoustic wave via heating by laser, detect by laser

Time reversal

time-reversed signals focus on source NL time reversed signals focus on damage

Nonlinear resonant scanning laser vibrometry

form standing waves, measure harmonics

(+) excitation can be by LF(-) standing wave is needed

State of the art: friction modeling

Coulomb friction law does not provide the boundary condition T(b) explicitly

- If stick then $|T| < \mu N$, *b*=const
- If slip then $|T| = \mu N$, *b* unknown

redistribute neighborhood

Multiple interrogations of all cells Implicit calculations

History: Hertz-Mindlin problem

Tangential = normal – reduced normal

valid for any axisymmetric convex bodies

Automate HM mechanics

Method of memory diagrams

Arbitrary loading in 2D

Arbitrary loading in 3D

$$\begin{cases} b = \theta \mu \int_{0}^{a} D(\alpha) d\alpha \\ T = \mu \int_{0}^{a} D(\alpha) \frac{dN}{da} \Big|_{a=\alpha} d\alpha \end{cases}$$

 $\begin{cases} \vec{b} = \theta \mu \int_{0}^{a} \vec{D}(\alpha) d\alpha \\ \vec{T} = \mu \int_{0}^{a} \vec{D}(\alpha) \frac{dN}{da} \Big|_{a=\alpha} d\alpha \end{cases}$

Result: $\vec{T} = MMD(\vec{b})$

Consequence: for same normal response same tangential, replace roughness by effective axisymmetric

MMD contact model

MMD-FEM code

2D geometry with a notch

Non-trivial radiation diagram

Conditions do not correspond to any real nonlinear NDT technology

Modeling for resonant vibrometry

Extremely exaggerated damping (vs typical for metals) in order to build up the standing wave for a reasonable time!

NB: 1 s of acoustic experiment = 10^6 of calculations without crack

5-10 hours in our case with a crack, the crack adds a factor of 5-10

Modeling for resonant vibrometry

- Gap in parameters between theory and experiment remains
- Qualitative agreement for laser vibrometry experiment
- Seeking for more quantitative agreement
 - NDT applications based on modeling

- Identification: retrieve information on location, size and orientation of a crack
- Prognostics: use methods of damage mechanics to predict damage evolution

Marina TERZI

- PhD expected in February 2022
- Experimental acoustics, focus on NDT
- Numerical acoustics
- Moscow State University graduate

