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Context

Guided wave applications:

dynamic analysis of elongated
structures

propagation over long distances,
sensitivity to small damages

examples:
– Non Destructive Evaluation

(ultrasonics)
– vibration and noise reduction
– statistical energy analysis...

NDE: detecting a damage with elastic waves

Generality about waveguides:

Guided wave propagation: dispersive
and multimodal

Dispersion curves required

Modeling tools needed
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On the modeling of elastic waveguides

Full 3D approach:

high frequency (e.g. ultrasonics) → fine mesh

guided waves go to infinity → large model

huge computational memory required

tedious post-processing for wave modes...

Reduced modeling (modal approach):

guided waves = modes

eigenvalue problem

plates, cylinders: analytical approaches (Thomson-Haskell, ©Disperse, . . .)

arbitrary geometry: finite element discretization
– of cross-section1 (often referred to as “SAFE” method)

– of a 3D slice with Bloch-Floquet periodic conditions2 (“WFEM”)

SAFE: Semi-Analytical Finite Element method
WFEM: Wave Finite Element Method

1Lagasse JASA 1973, Aalami JAM 1973, Hayashi et al. Ultrasonics 2003, Bartoli et al. JSV 2006,...
2Gry et al. JSV 1997, Mace et al. JASA 2005,...
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Our motivation: helical structures

Typical example of application: NDT and SHM of cables (damage detection, tension
estimation,...)

Helical symmetry:

along one direction (beam-like structures) or two directions (tube-like)

continuous (uniform waveguides) or discrete (periodic waveguides)

Left: bridge cable (anchorage), right: seven-wire
strand

Umbilical power cable
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State-of-the-art (GeoEND lab)

From a 3D seven-wire strand... ... to SAFE 2D
(continuous helical symmetry,
12369 dofs)

... and to SAFE 2D/6
(+discrete rot. symmetry,
2094 dof → CPU time/13)

From a 3D cable armor... ... to SAFE 2D
(1,000,000 dofs)

... and to 2D/50
(22587 dofs)
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Treyssède and Zhou Bloch waves in bi-helical structures



Introduction Bi-helical periodicity pattern Existence of Bloch waves FE computation Results Conclusion

Let us further generalize...

Doubled armored cable
(high strength submarine

power cable)
source: BPP catalog

Double armor

Discrete symmetry along two directions ? (both helical)
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Helical coordinates

Cartesian, cylindrical and helical
coordinates

Two layers (virtual or not), Layer
1 (blue) and Layer 2 (red)

Layer α is divided by Nα helices,
oriented along sα, of radius Rα

and lay angle ϕα (α=1,2)

Bi-helical periodicity pattern
(s1,s2): helical coordinates
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Bi-helical coordinate system

Relationship between cylindrical and helical coordinates:{
θ = 2π

ℓ1
s1 +

2π
ℓ2

s2

z = L1
ℓ1
s1 +

L2
ℓ2
s2

L1,2 : helix steps measured along z-axis (straight)
ℓ1,2 : curvilinear steps

Position vector OM = rer (θ) + zez :

OM = r cos
(

2π
ℓ1

s1 +
2π
ℓ2

s2
)
ex + r sin

(
2π
ℓ1

s1 +
2π
ℓ2

s2
)
ey +

(
L1
ℓ1
s1 +

L2
ℓ2
s2
)
ez

The 3D coordinates are now:

(s1,s2,r)

Surfaces s2=cst (left), s1=cst (right)
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Unit cell boundaries

A first difficulty...

Left/right boundaries Γ±1 :
s1 = cst = ±∆ℓ1/2 (helicoids)

Bottom/top boundaries Γ±2 :
s2 = cst = ±∆ℓ2/2 (helicoids)

with cell lengths defined by:
∆ℓ1 = ℓ1

N2

L2
L2−L1

,∆ℓ2 = ℓ2
N1

L1
L2−L1

→ Unit cells are cut by non-plane surfaces

x
y

z

Unit cell for a thick hollow cylinder

Parametrization of boundaries for a double armor:

intersection between 4 helicoids Γ±α (2D) and
the helical wire volumes Hα (3D)...

the solution is not analytic
→ multiple non-linear equations to solve (in
one variable) Unit cell for a double armor

left: front view, right: FE mesh
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Invariance(*) in 2D periodic media

Reminder: Bloch waves in two directions s1 and s2: ψ(s1, s2) = eik1s1 eik2s2u(s1, s2), with kα:

wavenumbers, u: ∆ℓα-periodic function (∆ℓα: unit cell lengths)

Question: existence of Bloch waves in such a geometry ?

The coeff. of diff. equations must be periodic in two curved directions

Let us rewrite the equilibrium equations in the bi-helical system...

Example: equilibrium equation for elasticity

σij
,j +Γimjσ

mj +Γjmjσ
im + ρω2g ijuj = 0, with σij = C ijkl ϵkl , ϵkl =

1
2
(uk,l + ul,k − Γmklum)

The coefficients are functions of: the physical properties (ρ and C ijkl )... and Γkij !

Key formula: Γkij =
1
2
gkl

(
∂gjl
∂x i

+ ∂gil
∂x j

− ∂gij
∂x l

)
→ functions of the gij ’s only

Conditions for invariance in periodic media along curved directions (s1,s2):

1 the shape of the geometry is (∆ℓ1,∆ℓ2)-periodic along (s1,s2)

2 the physical properties are (∆ℓ1,∆ℓ2)-periodic along (s1,s2)

3 the metric tensor g does not depend on (s1,s2)

(*) ”invariance” ≡ the coefficients of the differential equations are periodic
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Proof of existence in bi-helical structures

Application to the bi-helical coordinates: let us calculate the metric tensor...

Reminder: (g)ij = gi · gj , with


g1 = ∂OM

∂s1

g2 = ∂OM
∂s2

g3 = ∂OM
∂r

⇒ g =



4π2r2 + L21
ℓ21

4π2r2 + L1L2

ℓ1ℓ2
0

4π2r2 + L1L2

ℓ1ℓ2

4π2r2 + L22
ℓ22

0

0 0 1


point 3 checked ✓

Corollary: proof of the existence of Bloch waves in bi-helical waveguides whatever the
physics
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Implementation: the Wave Finite Element Method

FE discretization of the unit cell:

(K− ω2M− iωC)U = F

Elastic fields U and F are not scalar: Cartesian components must be
transformed in the covariant basisg1

g2
g3

 = JT
ex
ey
ez

 , JT =

− 2πr
ℓ1

sin θ 2πr
ℓ1

cos θ
L1
ℓ1

− 2πr
ℓ2

sin θ 2πr
ℓ2

cos θ
L2
ℓ2

cos θ sin θ 0


Apply:

1 Displacement boundary conditions of Floquet-Bloch type (two-directional):

JTRUR = λ1J
T
LUL, JTTUT = λ2J

T
BUB , JTRBURB = λ1J

T
LBULB

JTLTULT = λ2J
T
LBULB , JTRTURT = λ1λ2J

T
LBULB

with: λ1 = eik1∆ℓ1 , λ2 = eik2∆ℓ2 (k1, k2: helical wavenumbers)

2 Force boundary conditions... (by condensation of displacement)

3 Solve the eigenvalue problem for ω (k1,2 are the fixed parameters)

x
y

z

Unit cell
example

(a thick tube)

uT

uB

uR

uL

uI

u
LT

u
LB

u
RB

u
RT

dofs
classification
(2D view)
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Relationship between wavenumbers

Our structure is of cylindrical type:
kz =

k2ℓ2 − k1ℓ1

L2 − L1

kθ =
k1ℓ1L2 − k2ℓ2L1

2π(L2 − L1)

As opposed to a plate-like geometry, the propagation constants λ1 and λ2 are not
independent:

λN2
1 λ−N1

2 = 1

⇒ For (k1,k2) in the first Brillouin zone, the circumferential wavenumber is given by:

kθ = nα

with nα varying between N1 consecutive integer values or N2 consecutive values
depending on whether the user sets k1 or k2
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Application to double armor cables

Dispersion curves for: single free wire (left), double armor in low-frequency regime (middle),
double armor in high-frequency regime (right, gray: free wire) computed for n1 = 0.
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Chiral nanotubes

Test case taken from from Maurin et al., CMAME, 2017
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Δl1 = l√3

Δl2 = l√3

Left: FE mesh of the unit cell. Right: dispersion curves
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Conclusion and future works

Conclusion and short-term works:

a modeling framework for Bloch waves in bi-helical structures

a straightforward extension: beam-like homogenization (quasi-static cable
bending fatigue)

another bi-helical architecture: the double layer strand

What’s next in the mid-term?

considering more and more heterogeneity...

work in progress (with Pierric Mora)...

... cables simplified as “granular” media (contact theory + beam theory)

16/20
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Validation for a uniform tube

x
y

z

Thick tube test case (R/h = 2). Left: FE mesh of the bi-helical unit cell, right: dispersion curves
for various circumferential orders n, computed with the bi-helical unit cell (•), with a commonly

used straight unit cell (×) cut along θ and z (Nθ = 40, ∆lz = 0.5h)
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Invariance in arbitrarily curved structures ?

Invariance along s: the coefficients of equilibrium equations,
including boundary conditions, must be s-periodic...

Do guided waves exist in curved structures? Not always, obviously...

Conditions for invariance in a curved direction s:

1 cross-section ✓

2 physical properties ✓

3 ?

A third condition is required:

intuition: difficult...

inherent to the coordinate system considered (curvilinear)

answer: differential geometry and tensor analysis required...

s
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Elements of differential geometry

Definitions:

covariant basis: (g1, g2, g3) = (∂X/∂x , ∂X/∂y , ∂X/∂s)

contravariant basis gi : gi · gj = δji

Christoffel symbols Γkij : gi,j = Γkijgk (⇔ Γkij = gi,j · gk )

The coefficients of differential operators are given by the Γkij ’s

Examples:
∇φ = φ,ig

i

∇u = (ui,j − Γkijuk )g
i ⊗ gj

∇ · σ = (σij,j − Γkijσkj − Γkjjσik )g
i

...

The metric tensor

Definition: (g)ij = gi · gj

Key formula: Γkij =
1
2
gkl

(
∂gjl
∂x i

+ ∂gil
∂x j

− ∂gij
∂x l

)
→ functions of the gij ’s only
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Metric tensor for usual coordinate systems
cartesian: cylindrical: spherical:

g =

1 0 0
0 1 0
0 0 1

 g =

1 0 0
0 r2 0
0 0 1

 g =

1 0 0
0 r2 0
0 0 r2 sin2 φ



Metric tensor for some helical systems

one-directional helical (x , y , s):
X(x , y , s) = R(s) + xN(s) + yB(s)

g =

 1 0 −τy
0 1 τx

−τy τx τ2(x2 + y2) + (1− κx)2


mixed helical-polar (ρ, θ, s):
X(ρ, θ, s) = R(s) + ρ cos θN(s) + ρ sin θB(s)

g =

1 0 0
0 r2 τ2r2

0 τ2r2 τ2r2 + (1 + κr cos θ)2


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