ESPCI 😨 PARIS | PSL🕱

Superresolved imaging based on spatiotemporal wave-front shaping

Fabrice Lemoult

<u>Guillaume Noetinger</u>, S. Métais, G. Lerosey, S. Popoff, M. Fink

Diffraction limit and image resolution

An example of super-resolved imaging: STED

Exploiting non-linearity gives a sub-diffraction spot

MPI for Biophysical Chemistry, Medda, et al.

Space time modulations

Space material

Multiple **reflections** and transmissions in space Frequency is conserved

Phononic/photonic crystals...

Multiple **reflections** and transmissions in time! Momentum is conserved

Floquet crystals...

Multiple spatio-temporal refelctions and transmissions?? Neither frequency nor momentum are conserved!

Time material

Pierre Bon et al., ACS Photonics 2022 PARIS CUT

Proof of concept in acoustics

Improvement: spatiotemporal wavefront shaping

Image at $@ \omega_0$

Multi-harmonic imaging

Image reconstruction

Resolution improvement

Resolution :

+70% better than Confocal, +10% better than structured illumination

Is it transferrable to optics?

PHYSICAL REVIEW APPLIED 19, 024032 (2023)

Superresolved Imaging Based on Spatiotemporal Wave-Front Shaping

Guillaume Noetinger[®],¹ Samuel Métais,² Geoffroy Lerosey,³ Mathias Fink,¹ Sébastien M. Popoff,¹ and Fabrice Lemoult^{®1,*}

Optics experiment

DMD (*Digital Micromirror Device*)

Resolution: 2 Mpx Pixel: 10,8 μm Rate: 11 kHz

Difference with acoustics...

Difference with acoustics...

Intensity images without interferometric arm

Optical experiment

First optical images

Announcement

Actively looking for a postdoc starting in September (who also accepts to teach 135 hours of laboratory works at ESPCI)

THANK YOU

PHYSICAL REVIEW APPLIED 19, 024032 (2023)

Superresolved Imaging Based on Spatiotemporal Wave-Front Shaping

Guillaume Noetinger[®],¹ Samuel Métais,² Geoffroy Lerosey,³ Mathias Fink,¹ Sébastien M. Popoff,¹ and Fabrice Lemoult[®]^{1,*}