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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

When considering Maxwell equations, the
tangential components of E and H are con-
tinuous across two mediums:

n × JEK = 0 and n × JHK = 0.

A metasurface is an array of deeply subwavelength meta-atoms with
period δ ≪ λ and thickness ∝ δ (aspect ratio close to one).

• How to find these effective transition conditions ?
• Can it be used to optimize the geometry of each meta-atom ?
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

To obtain a non-negligible macroscopic effect of the metasurface on the
incident waves, it is necessary to consider resonant particles.

Fig. Simulations of metasurfaces with (a) Plasmonic resonances (ε < 0), (b) Mie
resonances (ε ≫ 1), (c) Helmholtz resonators/SSR (cavity opening ≪ δ).

Resonant meta-atoms
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Presentation in 2D TM only: H = Hz solution of ∇ ·
(

1
εr

∇H
)

+ k2
0 H = 0.

We consider meta-atoms made of εr = ε and fully surrounded by air εr = 1.

We introduce a microscopic variable ξ = x/δ to describe
the rapid variations of the near field with εr (ξ) and:

(far field) H =
∑

n
δnHn(x),

(near field) H =
∑

n
δnhn(x , ξ).

The values of the near & far fields are linked using match-
ing conditions at a distance ℓξ = 1/

√
δ:

H0(x , ±0) = lim
ℓξ→∞

h0(x , ξx , ±ℓξ),

H1(x , ±0) = lim
ℓξ→∞

h1(x , ξx , ±ℓξ) − ℓH0(x , ±0).

Surface homogenization
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

The effective field H = H0 + δH1 satisfies Gener-
alized Sheet Transition Conditions (GSTC):

JHK = χxx
ee {∂y H} − χxy

ee ∂x {H} ,

J∂y HK = χyy
ee ∂xx {H} − χyx

ee ∂x {∂y H} ,

with surface electric susceptibility tensor χee :

χee = δ

 JQy Kξy =±∞ JQx Kξy =±∞∫
Y

1
εr

∂ξy Qy dξ

∫
Y

1 − 1
εr

∂ξx Qx dξ

 ,

and elementary problems Qι, ι=x , y given by: ∇ξ ·
(

1
εr

(uι+∇ξQι)
)

= 0
lim

ξy →∞
∂ξy Qι = 0 .

Qx Qy

Far fields at the first order: GSTC
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

FEM simulation
(real metasurface)

Effective susceptibility χee

Analytical solution
(effective model)
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Analytical R and T

To summarize ...
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

The elementary problems only provide the static response of the meta-atom.
Localized surface plasmon resonances (LSPR) can occur when ε < 0.

There exists plasmonic modes (εn, Qn) with εn < 0 solutions to:{
∇ ·

(
1
εn

∇Qn
)

= 0 inside
∆Qn = 0 outside

⇒ for any ε, ι = x , y ; Qι =
∑

n
αι

nQn.

When ε is given by a dispersive relation ε(λ), its spectrum crosses the εn:
εn ≃ -1.3265

εn ≃ -1.5282
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Localized surface plasmon
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

When not periodic, we need simulations of the full metasurface.

If ε(x , ξ) (locally-periodic microscopically) then:

JHK = χxx
ee (x){∂y H} − χxy

ee (x)∂x {H} ,

J∂y HK = ∂x (χyy
ee (x)∂x {H}) − ∂x (χyx

ee (x){∂y H}) .

The variational formulation of H is given by:∫
D

∇H · ∇ϕ∗ − k2
0 Hϕ∗ dx +

∫
Γ

J∂y Hϕ∗K︸ ︷︷ ︸
J∂y HK{ϕ∗}+{∂y H}Jϕ∗K

dx = 0,

where in particular:∫
Γ
J∂y HK {ϕ∗}dx =

∫
Γ
(χyx

ee {∂y H} − χyy
ee ∂x {H})∂x {ϕ∗}dx .

Γ

Finite element implementation
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

In the next examples, we will consider a metasurface placed at a distance d
from a perfect reflector.

y
x Hinc Href

Locally periodic metasurface in reflection
PECd

For a normal-incident plane wave Hinc, we want to find the distribution of
radius ρ such that the reflected field Href is as close as possible to a target
H⋆

ref.

Metasurfaces in reflection
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Classicaly, the design of a metasurface is obtained using the local phase
induced by meta-atoms if they were placed in a periodic environment.
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Am

pl
itu

de

Phase
r

→
ϕ

r

1

1
2

0

π

0

-π

Periodicity d

PEC

r y = 0

π

0
-π

ϕ⋆
ref(x) (a)

-π -π/2 0 π/2 π

0.2

0.05
(r → ϕr )−1 (b)

Reflected phase

-2.75 2.75

0.2

0.05
ρ(x)

Position x

(c)

Design with local phase changes 1/2
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

To obtain a deflector with Hinc = e−ik0y and Href = e−ik0(sin(θ)x−cos(θ)y), the
phase change on Γ must follow (Generalized Snell law):

ϕ(x) = k0 sin(θ)x .

R
e[ H̃

] [A
/m

]

-1

1

Direct simulationHeuristic

R
e[H

−
H

inc ][A/m
]

-1

1

≃ 10.5°

Fig. (left) Design of a metasurface using local phases. (right) FEM simulation.

Design with local phase changes 2/2
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Instead of a parametric optimization (radius of each meta-atom), we have
to find a distribution ρ∗ : Γ → (rmin, rmax) maximizing a functional F (ρ):

ρ∗ := arg max
ρ

F (ρ),

solved using a gradient-based algorithm based on the Taylor expansion:

F (ρn + ϵρ̃) = F (ρn) + ϵ

∫
Γ

G(ρn)ρ̃ dx + o(ϵ) s.t. F (ρn + ϵG(ρn)︸ ︷︷ ︸
ρn+1

) > F (ρn).

• Numerically, G(ρn) is obtained via the solution of an adjoint state.

• The distribution ρ is discretized on Γ with P1 elements. To keep the
quasi-periodicity, we use a regularized version K (ρ) solution to:

−ν∂xxK (ρ) + K (ρ) = ρ with a small value ν > 0.

Gradient-based optimization
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Optimization of deflectors for different reflection angles.
rmax

rmin

ρ
(x

)
R

e[
H

re
f]

[A
/m

]

-1

1

N -1 -2 -3 -4 -5
Local method 76 % 71 % 59 % 59 % 49 %
Optimized 79 % 80 % 82 % 80 % 78 %

Application: Deflectors
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Second example: metalenses working in reflection.
We consider a finite-size metasurface and we want to maximize the reflected
energy at the focal point f0 = (0, f0), i.e. F (ρ) = |H(f0) − eikf0 |2.
rmax

rmin

ρ
(x

)
|H

re
f|2

[a
.u

.]

0

1
Period δ = λ/20. 500 meta-atoms.
250 its. of optimization in ∼ 5 min.

Application: Lenses 1/2

Nicolas Lebbe, 3rd colloquium, GDR MecaWave May 10, 2023 14 / 16



Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Second example: metalenses working in reflection.
We consider a finite-size metasurface and we want to maximize the reflected
energy at the focal point f0 = (0, f0), i.e. F (ρ) = |H(f0) − eikf0 |2.
rmax

rmin

ρ
(x

)
|H

re
f|2

[a
.u

.]

0

1
Period δ = λ/20. 500 meta-atoms.
250 its. of optimization in ∼ 5 min.

Application: Lenses 1/2

Nicolas Lebbe, 3rd colloquium, GDR MecaWave May 10, 2023 14 / 16



Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Second example: metalenses working in reflection.
We consider a finite-size metasurface and we want to maximize the reflected
energy at the focal point f0 = (0, f0), i.e. F (ρ) = |H(f0) − eikf0 |2.
rmax

rmin

ρ
(x

)
|H

re
f|2

[a
.u

.]

0

1
Period δ = λ/20. 500 meta-atoms.
250 its. of optimization in ∼ 5 min.

Application: Lenses 1/2

Nicolas Lebbe, 3rd colloquium, GDR MecaWave May 10, 2023 14 / 16



Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

Direct simulations of the resulting designs:

f0 = 2.5λ

direct effective

f0 = 5λ f0 = 10λ

The focusing efficiencies (percentage of the incident power reflected
“near” the focal point) are given by:

f0/λ0 5 10 15 20
Local method 23 % 34 % 38 % 42 %
Optimized 38 % 51 % 53 % 53 %

Application: Lenses 2/2
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Introduction Homogenization with LSPR Optimization with quasi-periodicity Conclusion

• Surface homogenization can be used to obtain effective transition
conditions which describes quasi-periodic metasurfaces. The model
is even valid in the presence of plasmonic resonances.

• The fast simulations of the effective model can be used to optimize
the performances of resonant metasurfaces.

N. Lebbe, K. Pham and A. Maurel “Homogenized transition conditions for
plasmonic metasurfaces based on quasi-static eigenmode expansion” Physical
Review B, vol. 107, no 8 (2023)
N. Lebbe, K. Pham and A. Maurel “Optimization of plasmonic metasurfaces
using quasi-periodic surface homogenization” in preparation

→ Other resonances (Mie, SRR), 3D (already done without resonances) ...

Conclusion
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