

Optimization of resonant and quasi-periodic metasurfaces

Nicolas Lebbe¹, Agnès Maurel², Kim Pham³

¹ LAPLACE, CNRS, INP Toulouse, France
 ² Institut Langevin, CNRS, ESPCI Paris, France
 ³ IMSIA, CNRS, ENSTA Paris, France

May 10, 2023 3rd colloquium, GDR MecaWave

Optimization with quasi-periodicity 0000000

Conclusion 0

When considering **Maxwell equations**, the tangential components of \mathbf{E} and \mathbf{H} are continuous across two mediums:

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = \mathbf{0}$$
 and $\mathbf{n} \times \llbracket \mathbf{H} \rrbracket = \mathbf{0}$.

Optimization with quasi-periodicity 0000000

Conclusion 0

INTRODUCTION

When considering **Maxwell equations**, the tangential components of **E** and **H** are continuous across two mediums:

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = \mathbf{0} \quad \text{and} \quad \mathbf{n} \times \llbracket \mathbf{H} \rrbracket = \mathbf{0}.$$

A metasurface is an array of deeply subwavelength meta-atoms with period $\delta \ll \lambda$ and thickness $\propto \delta$ (aspect ratio close to one).

• How to find these effective transition conditions ?

Optimization with quasi-periodicity 0000000

Conclusion 0

INTRODUCTION

When considering **Maxwell equations**, the tangential components of **E** and **H** are continuous across two mediums:

$$\mathbf{n} \times [\![\mathbf{E}]\!] = \mathbf{0} \quad \text{and} \quad \mathbf{n} \times [\![\mathbf{H}]\!] = \mathbf{0}.$$

A metasurface is an array of deeply subwavelength meta-atoms with period $\delta \ll \lambda$ and thickness $\propto \delta$ (aspect ratio close to one).

- How to find these effective transition conditions ?
- Can it be used to optimize the geometry of each meta-atom ?

Optimization with quasi-periodicity

Conclusion 0

RESONANT META-ATOMS

To obtain a non-negligible macroscopic effect of the metasurface on the incident waves, it is necessary to consider **resonant particles**.

Fig. Simulations of metasurfaces with (a) Plasmonic resonances ($\varepsilon < 0$), (b) Mie resonances ($\varepsilon \gg 1$), (c) Helmholtz resonators/SSR (cavity opening $\ll \delta$).

Optimization with quasi-periodicity

Conclusion 0

SURFACE HOMOGENIZATION

Presentation in 2D TM only: $H = H_z$ solution of $\nabla \cdot \left(\frac{1}{\varepsilon_r} \nabla H\right) + k_0^2 H = 0$. We consider meta-atoms made of $\varepsilon_r = \varepsilon$ and fully surrounded by air $\varepsilon_r = 1$.

Optimization with quasi-periodicity

Conclusion

SURFACE HOMOGENIZATION

Presentation in 2D TM only: $H = H_z$ solution of $\nabla \cdot \left(\frac{1}{\varepsilon_r} \nabla H\right) + k_0^2 H = 0$. We consider meta-atoms made of $\varepsilon_r = \varepsilon$ and fully surrounded by air $\varepsilon_r = 1$.

We introduce a **microscopic variable** $\boldsymbol{\xi} = \mathbf{x}/\delta$ to describe the rapid variations of the near field with $\varepsilon_r(\boldsymbol{\xi})$ and:

(far field)
$$H = \sum_{n} \delta^{n} H_{n}(\mathbf{x}),$$

(near field) $H = \sum_{n} \delta^{n} h_{n}(\mathbf{x}, \boldsymbol{\xi}).$

 $\begin{array}{c} \text{Optimization with quasi-periodicity} \\ \texttt{OOOOOOOO} \end{array}$

Conclusion 0

SURFACE HOMOGENIZATION

Presentation in 2D TM only: $H = H_z$ solution of $\nabla \cdot \left(\frac{1}{\varepsilon_r} \nabla H\right) + k_0^2 H = 0$. We consider meta-atoms made of $\varepsilon_r = \varepsilon$ and fully surrounded by air $\varepsilon_r = 1$.

We introduce a **microscopic variable** $\boldsymbol{\xi} = \mathbf{x}/\delta$ to describe the rapid variations of the near field with $\varepsilon_r(\boldsymbol{\xi})$ and:

(far field)
$$H = \sum_{n} \delta^{n} H_{n}(\mathbf{x}),$$

(near field) $H = \sum_{n} \delta^{n} h_{n}(\mathbf{x}, \boldsymbol{\xi}).$

The values of the near & far fields are linked using matching conditions at a distance $\ell_{\xi} = 1/\sqrt{\delta}$:

$$\begin{split} \mathrm{H}_{0}(x,\pm 0) &= \lim_{\ell_{\xi} \to \infty} \mathrm{h}_{0}(x,\xi_{x},\pm \ell_{\xi}), \\ \mathrm{H}_{1}(x,\pm 0) &= \lim_{\ell_{\xi} \to \infty} \mathrm{h}_{1}(x,\xi_{x},\pm \ell_{\xi}) - \ell \mathrm{H}_{0}(x,\pm 0). \end{split}$$

Homogenization with LSPR

Optimization with quasi-periodicity

FAR FIELDS AT THE FIRST ORDER: GSTC

The effective field $H = H_0 + \delta H_1$ satisfies Generalized Sheet Transition Conditions (GSTC):

$$\begin{split} \llbracket \mathbf{H} \rrbracket &= \chi_{ee}^{\mathsf{xx}} \left\{ \partial_{\mathsf{y}} \mathbf{H} \right\} - \chi_{ee}^{\mathsf{xy}} \partial_{\mathsf{x}} \left\{ \mathbf{H} \right\}, \\ \llbracket \partial_{\mathsf{y}} \mathbf{H} \rrbracket &= \chi_{ee}^{\mathsf{yy}} \partial_{\mathsf{xx}} \left\{ \mathbf{H} \right\} - \chi_{ee}^{\mathsf{yx}} \partial_{\mathsf{x}} \left\{ \partial_{\mathsf{y}} \mathbf{H} \right\}, \end{split}$$

with surface electric susceptibility tensor $\overline{\overline{\chi}}_{ee}$:

$$\overline{\overline{\chi}}_{ee} = \delta \left(\begin{array}{cc} \llbracket \mathcal{Q}_y \rrbracket_{\xi_y = \pm \infty} & \llbracket \mathcal{Q}_x \rrbracket_{\xi_y = \pm \infty} \\ \int_Y \frac{1}{\varepsilon_r} \partial_{\xi_y} \mathcal{Q}_y \, \mathrm{d} \boldsymbol{\xi} & \int_Y 1 - \frac{1}{\varepsilon_r} \partial_{\xi_x} \mathcal{Q}_x \, \mathrm{d} \boldsymbol{\xi} \end{array} \right) \,.$$

and elementary problems Q_{ι} , $\iota = x, y$ given by:

$$\begin{cases} \nabla_{\boldsymbol{\xi}} \cdot \left(\frac{1}{\varepsilon_r} \left(\mathbf{u}_{\iota} + \nabla_{\boldsymbol{\xi}} \mathcal{Q}_{\iota} \right) \right) = 0 \\ \lim_{\xi_{\gamma} \to \infty} \partial_{\xi_{\gamma}} \mathcal{Q}_{\iota} = 0 \end{cases}$$

Optimization with quasi-periodicity

Conclusion 0

TO SUMMARIZE ...

Optimization with quasi-periodicity

Conclusion 0

TO SUMMARIZE ...

Homogenization with LSPR

Optimization with quasi-periodicity

LOCALIZED SURFACE PLASMON

The elementary problems only provide the static response of the meta-atom. Localized surface plasmon resonances (LSPR) can occur when $\varepsilon < 0$.

Homogenization with LSPR

Optimization with quasi-periodicity

Conclusion O

LOCALIZED SURFACE PLASMON

The elementary problems only provide the static response of the meta-atom. Localized surface plasmon resonances (LSPR) can occur when $\varepsilon < 0$.

There exists **plasmonic modes** (ε_n , Q_n) with $\varepsilon_n < 0$ solutions to:

$$\begin{cases} \nabla \cdot \left(\frac{1}{\varepsilon_n} \nabla \mathcal{Q}_n\right) = 0 & \text{inside} \\ \Delta \mathcal{Q}_n = 0 & \text{outside} \end{cases} \Rightarrow \quad \text{for any } \varepsilon, \ \iota = x, y; \ \mathcal{Q}_\iota = \sum_n \alpha_n^\iota \mathcal{Q}_n. \end{cases}$$

Homogenization with LSPR

Optimization with quasi-periodicity

Conclusion

LOCALIZED SURFACE PLASMON

The elementary problems only provide the static response of the meta-atom. Localized surface plasmon resonances (LSPR) can occur when $\varepsilon < 0$.

There exists **plasmonic modes** (ε_n , Q_n) with $\varepsilon_n < 0$ solutions to:

$$\begin{cases} \nabla \cdot \left(\frac{1}{\varepsilon_n} \nabla \mathcal{Q}_n\right) = 0 & \text{inside} \\ \Delta \mathcal{Q}_n = 0 & \text{outside} \end{cases} \Rightarrow \quad \text{for any } \varepsilon, \ \iota = x, y; \ \mathcal{Q}_\iota = \sum_n \alpha_n^\iota \mathcal{Q}_n. \end{cases}$$

When ε is given by a dispersive relation $\varepsilon(\lambda)$, its spectrum crosses the ε_n :

When not periodic, we need simulations of the full metasurface.

If $\varepsilon(x, \xi)$ (locally-periodic microscopically) then:

 $\llbracket \mathbf{H} \rrbracket = \chi_{ee}^{xx}(x) \{\partial_{y}\mathbf{H}\} - \chi_{ee}^{xy}(x)\partial_{x} \{\mathbf{H}\}, \\ \llbracket \partial_{y}\mathbf{H} \rrbracket = \partial_{x} \left(\chi_{ee}^{yy}(x)\partial_{x} \{\mathbf{H}\}\right) - \partial_{x} \left(\chi_{ee}^{yx}(x) \{\partial_{y}\mathbf{H}\}\right).$

Optimization with quasi-periodicity ••••••• Conclusion

FINITE ELEMENT IMPLEMENTATION

When not periodic, we need simulations of the full metasurface.

If $\varepsilon(x, \xi)$ (locally-periodic microscopically) then:

$$\llbracket \mathbf{H} \rrbracket = \chi_{ee}^{xx}(x) \{\partial_{y}\mathbf{H}\} - \chi_{ee}^{xy}(x)\partial_{x} \{\mathbf{H}\}, \\ \llbracket \partial_{y}\mathbf{H} \rrbracket = \partial_{x} \left(\chi_{ee}^{yy}(x)\partial_{x} \{\mathbf{H}\}\right) - \partial_{x} \left(\chi_{ee}^{yx}(x) \{\partial_{y}\mathbf{H}\}\right).$$

The variational formulation of ${\rm H}$ is given by:

$$\int_{\mathcal{D}} \nabla \mathbf{H} \cdot \nabla \phi^* - k_0^2 \mathbf{H} \phi^* \, \mathrm{d} \mathbf{x} + \int_{\Gamma} \underbrace{\left[\partial_{\mathbf{y}} \mathbf{H} \phi^* \right]}_{\left[\partial_{\mathbf{y}} \mathbf{H} \right] \left\{ \phi^* \right\} + \left\{ \partial_{\mathbf{y}} \mathbf{H} \right\} \left[\phi^* \right]}_{\left[\phi^* \right]} \, \mathrm{d} \mathbf{x} = \mathbf{0},$$

where in particular:

$$\int_{\Gamma} \llbracket \partial_{y} \mathrm{H} \rrbracket \{\phi^{*}\} \mathrm{d}x = \int_{\Gamma} (\chi_{ee}^{yx} \{\partial_{y} \mathrm{H}\} - \chi_{ee}^{yy} \partial_{x} \{\mathrm{H}\}) \partial_{x} \{\phi^{*}\} \mathrm{d}x.$$

In the next examples, we will consider a metasurface placed at a distance d from a perfect reflector.

For a normal-incident plane wave H_{inc} , we want to find the distribution of radius ρ such that the reflected field H_{ref} is as close as possible to a target H^{\star}_{ref} .

Design with local phase changes 1/2

Classicaly, the design of a metasurface is obtained using the local phase induced by meta-atoms if they were placed in a periodic environment.

Nicolas Lebbe, 3rd colloquium, GDR MecaWave

Homogenization with LSPR

Design with local phase changes 2/2

To obtain a deflector with $H_{inc} = e^{-ik_0y}$ and $H_{ref} = e^{-ik_0(\sin(\theta)x - \cos(\theta)y)}$, the phase change on Γ must follow (Generalized Snell law):

$$\phi(x)=k_0\sin(\theta)x.$$

Fig. (left) Design of a metasurface using local phases. (right) FEM simulation.

Homogenization with LSPR

Design with local phase changes 2/2

To obtain a deflector with $H_{inc} = e^{-ik_0y}$ and $H_{ref} = e^{-ik_0(\sin(\theta)x - \cos(\theta)y)}$, the phase change on Γ must follow (Generalized Snell law):

$$\phi(x)=k_0\sin(\theta)x.$$

Fig. (left) Design of a metasurface using local phases. (right) FEM simulation.

Homogenization with LSPR

Conclusion

GRADIENT-BASED OPTIMIZATION

Instead of a parametric optimization (radius of each meta-atom), we have to find a distribution $\rho^* : \Gamma \to (r_{\min}, r_{\max})$ maximizing a functional $F(\rho)$:

$$\rho^* := \arg\max_{\rho} F(\rho),$$

solved using a gradient-based algorithm based on the Taylor expansion:

$$F(\rho_n + \epsilon \tilde{\rho}) = F(\rho_n) + \epsilon \int_{\Gamma} G(\rho_n) \tilde{\rho} \, \mathrm{d}x + o(\epsilon) \quad \text{s.t.} \quad F(\underbrace{\rho_n + \epsilon G(\rho_n)}_{\rho_{n+1}}) > F(\rho_n).$$

Homogenization with LSPR

Optimization with quasi-periodicity 00000000

GRADIENT-BASED OPTIMIZATION

Instead of a parametric optimization (radius of each meta-atom), we have to find a distribution $\rho^* : \Gamma \to (r_{\min}, r_{\max})$ maximizing a functional $F(\rho)$:

$$\rho^* := rg\max_{\rho} F(\rho),$$

solved using a gradient-based algorithm based on the Taylor expansion:

$$F(\rho_n + \epsilon \tilde{\rho}) = F(\rho_n) + \epsilon \int_{\Gamma} G(\rho_n) \tilde{\rho} \, \mathrm{d}x + o(\epsilon) \quad \text{s.t.} \quad F(\underbrace{\rho_n + \epsilon G(\rho_n)}_{\rho_{n+1}}) > F(\rho_n).$$

• Numerically, $G(\rho_n)$ is obtained via the solution of an **adjoint state**.

Homogenization with LSPR

Optimization with quasi-periodicity 00000000

GRADIENT-BASED OPTIMIZATION

Instead of a parametric optimization (radius of each meta-atom), we have to find a distribution $\rho^* : \Gamma \to (r_{\min}, r_{\max})$ maximizing a functional $F(\rho)$:

$$\rho^* := rg\max_{\rho} F(\rho),$$

solved using a gradient-based algorithm based on the Taylor expansion:

$$F(\rho_n + \epsilon \tilde{\rho}) = F(\rho_n) + \epsilon \int_{\Gamma} G(\rho_n) \tilde{\rho} \, \mathrm{d}x + o(\epsilon) \quad \text{s.t.} \quad F(\underbrace{\rho_n + \epsilon G(\rho_n)}_{\rho_{n+1}}) > F(\rho_n).$$

- Numerically, $G(\rho_n)$ is obtained via the solution of an **adjoint state**.
- The distribution ρ is discretized on Γ with P1 elements. To **keep the quasi-periodicity**, we use a **regularized** version $K(\rho)$ solution to:

$$-\nu\partial_{xx}K(\rho)+K(\rho)=
ho~~{
m with}~{
m a}~{
m small}~{
m value}~
u>0.$$

Application: Deflectors

Optimization of deflectors for different reflection angles.

Optimization with quasi-periodicity

Conclusion O

Application: Deflectors

Optimization of deflectors for different reflection angles.

Conclusion 0

Application: Deflectors

Optimization of deflectors for different reflection angles.

N	-1	-2	-3	-4	-5
Local method	76 %	71 %	59 %	59 %	49 %
Optimized	79 %	80 %	82 %	80 %	78 %

Conclusion

Application: Lenses 1/2

Second example: metalenses working in reflection.

We consider a finite-size metasurface and we want to maximize the reflected energy at the focal point $\mathbf{f}_0 = (0, f_0)$, i.e. $F(\rho) = |\mathrm{H}(\mathbf{f}_0) - e^{ikf_0}|^2$.

Conclusion

Application: Lenses 1/2

Second example: metalenses working in reflection.

We consider a finite-size metasurface and we want to maximize the reflected energy at the focal point $\mathbf{f}_0 = (0, f_0)$, i.e. $F(\rho) = |\mathrm{H}(\mathbf{f}_0) - e^{ikf_0}|^2$.

Conclusion

Application: Lenses 1/2

Second example: metalenses working in reflection.

We consider a finite-size metasurface and we want to maximize the reflected energy at the focal point $\mathbf{f}_0 = (0, f_0)$, i.e. $F(\rho) = |\mathrm{H}(\mathbf{f}_0) - e^{ikf_0}|^2$.

Optimization with quasi-periodicity ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$

Conclusion O

Application: Lenses 2/2

Direct simulations of the resulting designs:

The **focusing efficiencies** (percentage of the incident power reflected "near" the focal point) are given by:

f_0/λ_0	5	10	15	20
Local method	23 %	34 %	38 %	42 %
Optimized	38 %	51 %	53 %	53 %

CONCLUSION

- Surface homogenization can be used to obtain effective transition conditions which describes quasi-periodic metasurfaces. The model is even valid in the presence of plasmonic resonances.
- The **fast simulations** of the effective model can be used to **optimize** the performances of resonant metasurfaces.
- N. Lebbe, K. Pham and A. Maurel "*Homogenized transition conditions for plasmonic metasurfaces based on quasi-static eigenmode expansion*" Physical Review B, vol. 107, no 8 (2023)
- N. Lebbe, K. Pham and A. Maurel "*Optimization of plasmonic metasurfaces using quasi-periodic surface homogenization*" in preparation

$\rightarrow\,$ Other resonances (Mie, SRR), 3D (already done without resonances) ...