Optimisation topologique d'interfaces microstructurées

Rémi Cornaggia, Institut d'Alembert, Sorbonne Université, Paris, France

en collaboration avec Marie Touboul (Imperial College) et Cédric Bellis (LMA, Marseille)

Colloque MecaWave, 11 mai 2023

Microstructred interfaces and effective transmission conditions

Is it possible to attenuate or enhance the transmitted wave in some specific direction ?

An example from [Noguchi and Yamada, 2021]

Noguchi, Y. & Yamada, T. Topology optimization of acoustic metasurfaces by using a two-scale homogenization method Applied Mathematical Modelling, 2021

Optimisation d'interfaces

Optimization based on an effective model

(1) Homogenization process toward effective transmission conditions:

- Double-scale expansions and matched asymptotics
- Band problems to capture the microstructural effects
- FFT-based solvers to address these problems
- (2) Optimization strategy:
 - Cost functionals based on effective transmission properties
 - Topological sensitivity to drive updating steps
 - Level-set representation, regularization and iterative algorithm
 - Initialisation with optimal elliptic inclusions.

Outline

Introduction

Effective models, cell/band problems and FFT-based solvers

Optimization

- Optimization problem
- Topological sensitivity and approximate effective coefficients

Level-set algorithm, numerical examples

5 Conclusions and perspectives

Effective transmission conditions [Marigo et al., 2017, Lombard et al., 2017]

Antiplane shear waves:

$$\rho\left(\frac{\boldsymbol{x}}{\ell}\right)\frac{\partial^2 u_\ell(\boldsymbol{x},t)}{\partial t^2} - \boldsymbol{\nabla}\cdot\left[\mu\left(\frac{\boldsymbol{x}}{\ell}\right)\boldsymbol{\nabla} u_\ell(\boldsymbol{x},t)\right] = 0$$

- (ρ,μ) : density and shear modulus, 1-periodic along the interface
- Long-wavelength assumption: $\ell \ll \lambda$
- Double scale dependency and matched asymptotic expansions.

Effective model for macroscopic fields (V, S):

Effective parameters computed from Φ , solution of a **band problem** on Y_{∞} .

 $m_{\text{eff}} = (\mathcal{B}, \mathcal{C}, \mathcal{S})$

Band problem

Original problem in **infinite band**: (normalized "fast" coordinate $\boldsymbol{y} = \boldsymbol{x}/\ell$) $\nabla \cdot (\mu [\boldsymbol{I} + \nabla \Phi]) = \boldsymbol{0}$ in Y_{∞} Φ is periodic in the y_2 variable $\lim_{y_1 \to \pm \infty} \nabla \Phi = \boldsymbol{0}$

Computations in artificially bounded domain:

Effective coefficients [Marigo et al., 2017]

$$\begin{split} \boldsymbol{\mathcal{B}} &= \lim_{y_1 \to +\infty} \boldsymbol{\Phi} - \lim_{y_1 \to -\infty} \boldsymbol{\Phi} + \boldsymbol{f}(\boldsymbol{b}) \\ \boldsymbol{\mathcal{C}} &= \int_{Y_{\infty}} \mu(\boldsymbol{y}) \partial_2 \boldsymbol{\Phi}(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} + \boldsymbol{g}(\boldsymbol{b}, \mu) \\ \boldsymbol{\mathcal{S}} &= h(\boldsymbol{b}, \rho) \end{split}$$

Reformulation as a cell problem [Cornaggia, Touboul & Bellis, C. R. Mécanique, 2022]

Original problem in infinite band:

 $\begin{aligned} \nabla \cdot (\mu \left[\boldsymbol{I} + \boldsymbol{\nabla} \boldsymbol{\Phi} \right]) &= \boldsymbol{0} \quad \text{in } Y_{\infty} \\ \boldsymbol{\Phi} \text{ is periodic in the } y_2 \text{ variable} \\ \lim_{y_1 \to \pm \infty} \boldsymbol{\nabla} \boldsymbol{\Phi} &= \boldsymbol{0} \end{aligned}$

Equivalent cell problem:

 $\begin{vmatrix} \boldsymbol{\nabla} \cdot (\boldsymbol{\mu} \left[\boldsymbol{I} + \boldsymbol{\nabla} \boldsymbol{\Phi} \right]) = \boldsymbol{0} & \text{in } Y_b \\ \boldsymbol{\Phi} \text{ is periodic in the } y_2 \text{ variable} \\ \partial_n \boldsymbol{\Phi} \left(\pm b/2, \cdot \right) = \Lambda \left[\boldsymbol{\Phi} \left(\pm b/2, \cdot \right) \right] \end{aligned}$

A: Dirichlet-to-Neumann (DtN) operator. $(\mathcal{B}, \mathcal{C})$ have expressions implying only integrals on Y_b

Numerical strategy: decomposition $\Phi = \Phi_{\mathrm{per}} + \Phi_{\mathrm{bound}}$ (periodic + corrector)

- $\bullet~\Lambda$ and Φ_{bound} have an explicit expression in Fourier basis.
- Φ_{per} satisfies ∇ · (μ [I + ∇Φ_{bound} + ∇Φ_{per}]) = 0 ⇒ iterative FFT-based solvers [Moulinec and Suquet, 1995]

Examples for an elliptic inclusion

 $\mu_{\mathrm{inc}}/\mu_{\mathrm{mat}}=$ 6, 129imes129 pixels:

Outline

Introduction

2 Effective models, cell/band problems and FFT-based solvers

Optimization

- Optimization problem
- Topological sensitivity and approximate effective coefficients

Level-set algorithm, numerical examples

5 Conclusions and perspectives

Cost functionals and optimization problem

Cost functionals: evaluate the medium performance through its effective properties:

$$\mathcal{J}(\boldsymbol{m}) = J(\boldsymbol{m}_{\text{eff}}) \qquad \text{here:} \begin{array}{l} \boldsymbol{m} = (\rho(\boldsymbol{y}), \mu(\boldsymbol{y})), \quad \boldsymbol{y} \in Y_b \\ \boldsymbol{m}_{\text{eff}} = (\boldsymbol{\mathcal{B}}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{S}}) \end{array}$$

Examples : cost functionnals on effective reflexion and transmission coefficients for incident direction θ_I :

$$J(\boldsymbol{m}_{\text{eff}}) = F(\mathcal{R}(\boldsymbol{m}_{\text{eff}}, \boldsymbol{\theta}_{\mathbf{I}}), \mathcal{T}(\boldsymbol{m}_{\text{eff}}, \boldsymbol{\theta}_{\mathbf{I}}))$$

Optimization problem

Find m_{opt} that minimizes $\mathcal{J}(m)$.

With the dependencies $m \to \text{cell problems} \to m_{\text{eff}} \to J(m_{\text{eff}}) = \mathcal{J}(m)$

General strategy:

- Constraints and parametrization of m, e.g. piecewise uniform materials
- Iterative "material update" algorithms

$$oldsymbol{m}^{(n+1)} = oldsymbol{m}^{(n)} + \Delta oldsymbol{m}^{(n)}$$
 such that $\mathcal{J}\left(oldsymbol{m}^{(n+1)}
ight) < \mathcal{J}\left(oldsymbol{m}^{(n)}
ight)$

• Main tool: sensitivity of ${\cal J}$ to a material update Δm to choose a "good" $\Delta m^{(n)}$.

Topological sensitivity of a cost functional

[Sokolowski and Zochowski, 1999, Garreau et al., 2001, Amstutz, 2011, Bonnet et al., 2018] ...

• Localized phase change in the cell: $m o m_{arepsilon} = m + \chi_{P_{arepsilon}} \Delta m$

Expansion of
$$\mathcal{J}$$
: $\mathcal{J}(\boldsymbol{m}_{\boldsymbol{\varepsilon}}) = \mathcal{J}(\boldsymbol{m}) + \boldsymbol{\varepsilon}^2 \, \mathcal{D} \mathcal{J} + o(\boldsymbol{\varepsilon}^2)$ as $\boldsymbol{\varepsilon} \to 0$

• $\mathcal{DJ}(\boldsymbol{m}; \boldsymbol{z}; \mathcal{P}, \Delta \mu, \Delta \rho)$: topological sensitivity (or gradient, or derivative) of \mathcal{J} .

If $\mathcal{DJ}(\boldsymbol{z}) < 0$, then $\mathcal{J}(\boldsymbol{m}_{\varepsilon}) < \mathcal{J}(\boldsymbol{m})$ and therefore \boldsymbol{z} is a good choice for a phase change !

• Chain rule for $\mathcal{J}(\boldsymbol{m}) = J(\boldsymbol{m}_{\text{eff}})$:

$$\mathcal{DJ} = rac{\partial J}{\partial oldsymbol{m}_{ ext{eff}}} \mathcal{D}oldsymbol{m}_{ ext{eff}}$$

 \implies Need to compute $(\mathcal{DB}, \mathcal{DC}, \mathcal{DS})$

Example : topological derivative of S

By definition :

$$\begin{vmatrix} \mathcal{S} = b + \frac{\rho_{i} - \rho_{m}}{\rho_{m}} |\Omega_{i}| \\ \mathcal{S}_{\varepsilon} = b + \frac{\rho_{i} - \rho_{m}}{\rho_{m}} |\Omega_{i}| + \frac{\Delta \rho}{\rho_{m}} |P_{\varepsilon}| \end{vmatrix}$$

Exact expansion:

$$\mathcal{S}_{\varepsilon} = \mathcal{S} + \varepsilon^2 \underbrace{\frac{\Delta \rho}{\rho_{\rm m}} |\mathcal{P}|}_{\mathcal{DS}}$$

Here \mathcal{DS} does not depend on z nor on the shape \mathcal{P} (*not* the general case).

Topological derivatives and polarization tensor

The topological derivatives are (see [Touboul, PhD thesis, Chap. 4, 2021]) :

$$\begin{split} \mathcal{DS}(\boldsymbol{m}, \boldsymbol{z}, \mathcal{P}, \Delta \boldsymbol{m}) &= \frac{\Delta \rho}{\rho_{\rm m}} |\mathcal{P}|, \\ \mathcal{DB}(\boldsymbol{m}, \boldsymbol{z}, \mathcal{P}, \Delta \boldsymbol{m}) &= -(\boldsymbol{\nabla} \Phi_1(\boldsymbol{z}) + \boldsymbol{e}_1) \cdot \boldsymbol{A}(\boldsymbol{z}) \cdot (\boldsymbol{\nabla} \Phi(\boldsymbol{z}) + \boldsymbol{I}) \\ \mathcal{DC}(\boldsymbol{m}, \boldsymbol{z}, \mathcal{P}, \Delta \boldsymbol{m}) &= (\boldsymbol{\nabla} \Phi_2(\boldsymbol{z}) + \boldsymbol{e}_2) \cdot \boldsymbol{A}(\boldsymbol{z}) \cdot (\boldsymbol{\nabla} \Phi(\boldsymbol{z}) + \boldsymbol{I}). \end{split}$$

depend on

- the cell solution gradient at perturbation point $abla \Phi(oldsymbol{z})$,
- the polarization tensor $\boldsymbol{A}(\boldsymbol{z}) = \boldsymbol{A}(\mathcal{P}, \mu(\boldsymbol{z}), \Delta \mu)$

Polarization tensor A:

- used in [Cedio-Fengya et al., 1998, Ammari and Kang, 2007] in similar context,
- also called *localization* or *concentration* tensor, related to Eshelby and Hill tensors in elasticity/micromechanics [Eshelby, 1957, Parnell, 2016],
- symmetric,
- known analytically for elliptic shapes of semiaxes lengths $(1,\gamma)$, and directions (n_1, n_2) :

$$\mathbf{A}^{\text{ellipse}}(\mu(\boldsymbol{z}), \Delta \mu) = \pi \gamma(\gamma + 1) \frac{\Delta \mu}{\mu(\boldsymbol{z})} \left(\frac{\boldsymbol{n}_1 \otimes \boldsymbol{n}_1}{1 + \gamma + \gamma \frac{\Delta \mu}{\mu(\boldsymbol{z})}} + \frac{\boldsymbol{n}_2 \otimes \boldsymbol{n}_2}{1 + \gamma + \frac{\Delta \mu}{\mu(\boldsymbol{z})}} \right)$$

٠

Numerical validation

• Leading-order approximation of homogenized coefficients e.g.

$$\boldsymbol{\mathcal{B}}_{\boldsymbol{\varepsilon}} = \boldsymbol{\mathcal{B}} + \boldsymbol{\varepsilon}^2 \boldsymbol{\mathcal{D}} \boldsymbol{\mathcal{B}}(\boldsymbol{z}) + o(\boldsymbol{\varepsilon}^2)$$

• Computation of relative error e.g. :

$$\frac{\left|\mathcal{B}_{1,\varepsilon} - [\mathcal{B}_1 + \varepsilon^2 \mathcal{D} \mathcal{B}_1]\right|}{|\mathcal{B}_{1,\varepsilon}|}$$

(should be $o(\varepsilon^2)$, expected at least $O(\varepsilon^3)$)

(term in ε^3 vanishes, should be true for any centrally-symmetric shape \mathcal{P} [Bonnet, 2009])

Rémi Cornaggia

Approximative effective coefficients for elliptic inclusions

Particular case: one inclusion P_{ε} in an homogeneous cell ($\Phi = 0$)

$$\mathcal{S} = b + \varepsilon^2 \frac{\Delta \rho}{\rho_{\rm m}} |\mathcal{P}|, \quad \mathcal{B}_1 = b - \varepsilon^2 A_{11} + o(\varepsilon^2), \quad \mathcal{B}_2 = -\varepsilon^2 A_{12} + o(\varepsilon^2), \quad \mathcal{C}_2 = b + \varepsilon^2 A_{22} + o(\varepsilon^2).$$

- Analytical expressions when A is known
- Example : ellipse tilted at 40° , semi-axes (ε , 0.2ε):

Outline

Introduction

2 Effective models, cell/band problems and FFT-based solvers

Optimization

- Optimization problem
- Topological sensitivity and approximate effective coefficients

4 Level-set algorithm, numerical examples

5 Conclusions and perspectives

Level-set representation and projection algorithm

[Amstutz and Andrä, 2006, Amstutz, 2011]

• Material distribution at iteration n represented by a level-set function $\psi^n\colon$

$$(\star) \begin{cases} \psi^n > 0 & \text{ in } Y_1 \\ \psi^n < 0 & \text{ in } Y_2 \end{cases} \quad \text{ and } \quad \|\psi^n\|_{L^2(Y)} = 1$$

• Signed and normalized TD $\overline{\mathcal{D}}\mathcal{J}$ (here for $\mathcal{P} = \text{disk}$):

$$\overline{\mathcal{D}}\mathcal{J} := \begin{cases} \mathcal{D}\mathcal{J}/\|\mathcal{D}\mathcal{J}\|_{L^2(Y)} & \text{ in } Y_1 \\ -\mathcal{D}\mathcal{J}/\|\mathcal{D}\mathcal{J}\|_{L^2(Y)} & \text{ in } Y_2 \end{cases} \quad \text{ so that } \quad \|\overline{\mathcal{D}}\mathcal{J}\|_{L^2(Y)} = 1 \end{cases}$$

Optimality condition: If $\overline{\mathcal{D}}\mathcal{J}$ satisfies the sign condition (\star) then $\mathcal{D}\mathcal{J}(\boldsymbol{z}) > 0 \quad \forall \boldsymbol{z} \in Y$ then \mathcal{J} reached a local minimum

Update of ψ by **projection** onto $\overline{\mathcal{D}}\mathcal{J}$:

$$\psi^{n+1} = \mathbf{a_n}\psi^n + \mathbf{b_n}\overline{\mathcal{D}}\mathcal{J}(\psi^n)$$

 (a_n, b_n) are chosen so that $\|\psi^{n+1}\|_{L^2(Y)} = 1$ and $\mathcal{J}(\psi^{n+1}) < \mathcal{J}(\psi^n)$

A first test [Touboul, Ph.D. Thesis, 2021 (Chap. 4)]

- Goal : minimization of the effective reflexion coefficient \mathcal{R} for an incident angle $\theta_{I} = \pi/4$
 - ▶ Define $\mathcal{R}(\boldsymbol{m}_{\mathrm{eff}}, \boldsymbol{\theta}_{\mathrm{I}})$ with $\boldsymbol{m}_{\mathrm{eff}} = (\boldsymbol{\mathcal{B}}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{S}})$
 - Compute the sensibilities (DB, DC, DS)
- Two-phase material: (1) matrix and (2) inclusion.
- Volume constraint on inclusion phase Y_2 in the unit cell: $V_C = 0.6$
- Perimiter penalization following [Amstutz, 2013] to get smooth final configurations

$$\mathcal{J} = |\mathcal{R}|^2 + \lambda \left(rac{|Y_2|}{V_C} - 1
ight)^2 + lpha_{ ext{per}} ext{Per}(Y_2)$$
 (λ : iteratively chosen weight)

Attenuated scattered field

• Numerical experiments : for a pulse emitted at a source point, measure the energy of the scattered field by the interface:

• "Attenuated direction" linked to the effective transmission coefficient T computed for a plane wave with wavenumber k and incident angle θ_1 :

$$\mathcal{T}(\boldsymbol{\theta}_{\mathbf{I}}) = 1 + i(k\ell)\mathcal{T}_{1}(\boldsymbol{m}_{\text{eff}}, \boldsymbol{\theta}_{\mathbf{I}}) + O((k\ell)^{2})$$

"Attenuated direction" at θ_{\min} when $\mathcal{T}_1(\boldsymbol{m}_{\mathrm{eff}}, \boldsymbol{\theta}_{\mathrm{I}})$ changes sign at $\boldsymbol{\theta}_{\mathrm{I}} = \theta_{\min}$.

• Main cost functional:

$$\mathcal{J}_{ ext{main}}(oldsymbol{m}_{ ext{eff}}) = \left(rac{\mathcal{T}_{1}(oldsymbol{m}_{ ext{eff}}, heta_{ ext{min}})}{\partial_{ heta}\mathcal{T}_{1}(oldsymbol{m}_{ ext{eff}}, heta_{ ext{min}})}
ight)^{2} \quad ext{with} \quad \partial_{ heta}\mathcal{T}_{1} = rac{\partial\mathcal{T}_{1}}{\partial heta_{ ext{I}}}$$

Results for $\theta_{\min} = 0$, $V_C = 0.2$, perimeter penalisation

Initialisations:

ellipse at 45°

"Optimal" ellipse (almost) analytical optimisation based on approximative $m_{
m eff}$

Performances for for $\theta_{\min} = 0$, $V_C = 0.2$

	$N_{\rm iter}$	V end	${\mathcal J}$ init.	${\mathcal J}$ end	$\mathcal{J}_{ ext{main}}$ init.	$\mathcal{J}_{ ext{main}}$ end
ellipse	103	0.15	1.21	$2.24 \cdot 10^{-1}$	$9.72 \cdot 10^{-1}$	$1.4 \cdot 10^{-2}$
random	82	0.16	$5.23 \cdot 10^{3}$	$1.93 \cdot 10^{-1}$	$5.23 \cdot 10^{3}$	$7.2 \cdot 10^{-3}$
optimal ellipse	60	0.14	$1.02 \cdot 10^{-1}$	$6.76 \cdot 10^{-2}$	$3.61 \cdot 10^{-1}$	$2.1 \cdot 10^{-3}$

Results for $heta_{\min}=\pi/4$, $V_C=0.3$, perimeter penalisation

Initialisations:

Rémi Cornaggia

Performances for $heta_{\min}=\pi/4$, $V_C=0.3$:

	$N_{ m iter}$	V end	${\mathcal J}$ init.	${\mathcal J}$ end	$\mathcal{J}_{ ext{main}}$ init.	$\mathcal{J}_{ ext{main}}$ end
ellipse	49	0.30	1.51	$2.84 \cdot 10^{-2}$	1.40	$9.72 \cdot 10^{-5}$
random	52	0.24	$2.03 \cdot 10^{-1}$	$1.35 \cdot 10^{-1}$	$2.11 \cdot 10^{-4}$	$7.99 \cdot 10^{-4}$
optimal ellipse	28	0.28	$6.27 \cdot 10^{-2}$	$2.96 \cdot 10^{-2}$	$3.30 \cdot 10^{-3}$	$8.76 \cdot 10^{-5}$

Conclusions

- A topological optimization procedure is proposed, combining
 - Effective model obtained via two-scale asymptotic homogenization
 - FFT-based algorithms to solve cell problems
 - Approximative effective coefficients (for ellipses, using topological derivatives) \Rightarrow Help to find specific initialisations.
 - Level-set, TD-based, projection algorithm (with volume and perimeter constraints)
- The procedure is applied to achieve
 - Minimal reflexion under volume constraint.
 - Attenuation of scattered energy in chosen direction.

Perspectives

- Time-domain simulations of waves in the designed materials
- Extensions to other other physics and regimes:
 - 1. Elasticity
 - 2. Resonant interfaces with high-contrast inclusions [Pham et al., 2017, Touboul et al., 2020] [Nicolas Lebbe, hier]
- Improve the optimization algorithm
 - Couple shape and topological derivative [Allaire et al., 2005, Amstutz et al., 2018]
 - Use optimized FFT solvers.

Merci pour votre attention !

Et à toutes les personnes qui œuvrent et ont œuvré pour le GDR MecaWave !

 FFT-based computation of homogenized interface parameters Rémi Cornaggia, Marie Touboul & Cédric Bellis Comptes Rendus Mécanique, 2022

• Marie Touboul's Ph.D. :

Acoustic and elastic wave propagation in microstructured media with interfaces: homogenization, simulation and optimization

https://tel.archives-ouvertes.fr/tel-03411353

 Topological sensitivity-based analysis and optimization of microstructured interfaces Marie Touboul, Rémi Cornaggia & Cédric Bellis Hopefully on HAL before summer ...

References

Allaire, G., de Gournay, F., Jouve, F., and Toader, A.-M. (2005).

Structural optimization using topological and shape sensitivity via a level set method.

Control and Cybernetics, 34(1):59-80.

Ammari, H. and Kang, H. (2007).

Polarization and moment tensors: with applications to inverse problems and effective medium theory, volume 162, Springer.

Amstutz, S. (2011).

Analysis of a level set method for topology optimization. Optimization Methods and Software, 26(4-5):555-573.

Amstutz, S. (2013).

Regularized perimeter for topology optimization. SIAM Journal on Control and Optimization, 51(3):2176-2199.

Amstutz, S. and Andrä, H. (2006).

A new algorithm for topology optimization using a level-set method.

Journal of Computational Physics, 216(2):573 - 588.

Amstutz, S., Dapogny, C., and Ferrer, A. (2018).

A consistent relaxation of optimal design problems for coupling shape and topological derivatives. Numerische Mathematik, 140(1):35-94.

Bonnet, M. (2009).

Higher-order topological sensitivity for 2-d potential problems. application to fast identification of inclusions.

International Journal of Solids and Structures, 46(11?12):2275 -2202

Bonnet, M., Cornaggia, R., and Guzina, B. (2018).

Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media. SIAM Journal on Applied Mathematics, 78(4):2057-2082.

Cedio-Fengya, D. J., Moskow, S., and Vogelius, M. S. (1998). Identification of conductivity imperfections of small diameter by boundary measurements, continuous dependence and computational reconstruction. Inverse Problems, 14(3):553.

Eshelby, J. (1957).

The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society, 241:376-396.

Garreau, S., Guillaume, P., and Masmoudi, M. (2001). The topological asymptotic for pde systems: The elasticity case. SIAM Journal on Control and Optimization, 39(6):1756-1778.

Ē.

Lombard, B., Maurel, A., and Marigo, J. (2017). Numerical modeling of the acoustic wave propagation across a homogenized rigid microstructure in the time domain.

Journal of Computational Physics, 335:558 - 577.

Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves

Journal of Elasticity, 128(2):265-289

Moulinec, H. and Suguet, P. (1995).

A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures.

In IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, pages 235–246. Springer Netherlands.

Noguchi, Y. and Yamada, T. (2021).

Topology optimization of acoustic metasurfaces by using a two-scale homogenization method. Applied Mathematical Modelling, 98:465–497.

Parnell, W. J. (2016).

The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics.

Journal of Elasticity, pages 1-64.

Pham, K., Maurel, A., and Marigo, J.-J. (2017).

Two scale homogenization of a row of locally resonant inclusions - the case of anti-plane shear waves.

Journal of the Mechanics and Physics of Solids, 106:80 - 94.

Sokolowski, J. and Zochowski, A. (1999).

On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4):1251–1272.

Touboul, M., Pham, K., Maurel, A., Marigo, J.-J., Lombard, B., and Bellis, C. (2020).

Effective resonant model and simulations in the time-domain of wave scattering from a periodic row of highly-contrasted inclusions. *Journal of Elasticity*, 142(1):53–82.