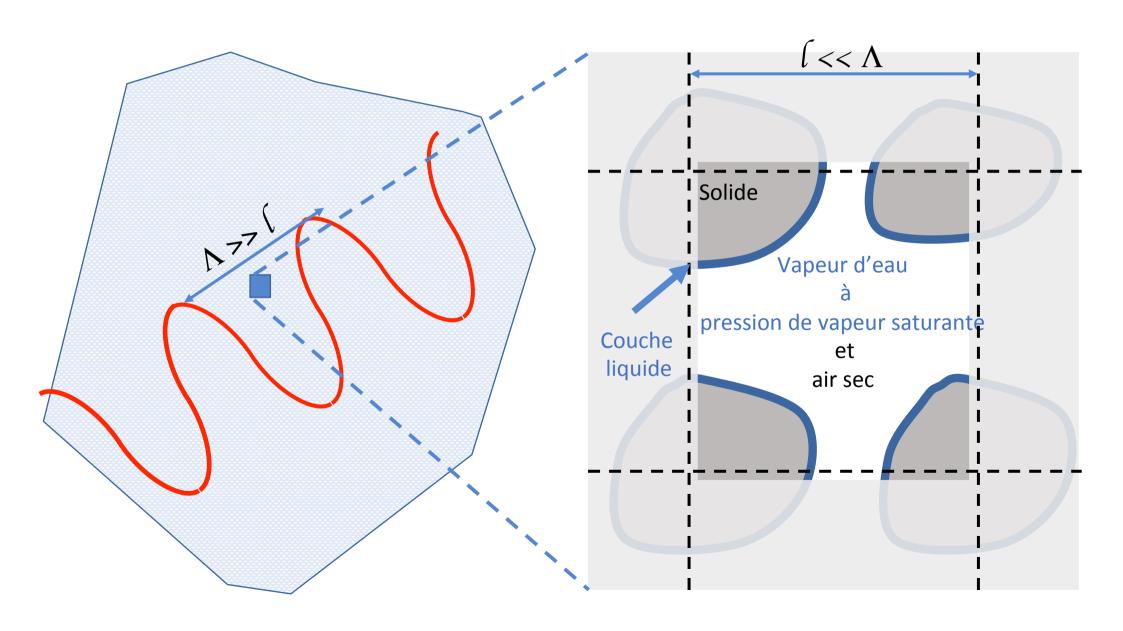
Onde acoustique avec changement de phase induit

Claude Boutin & Rodolfo Venegas

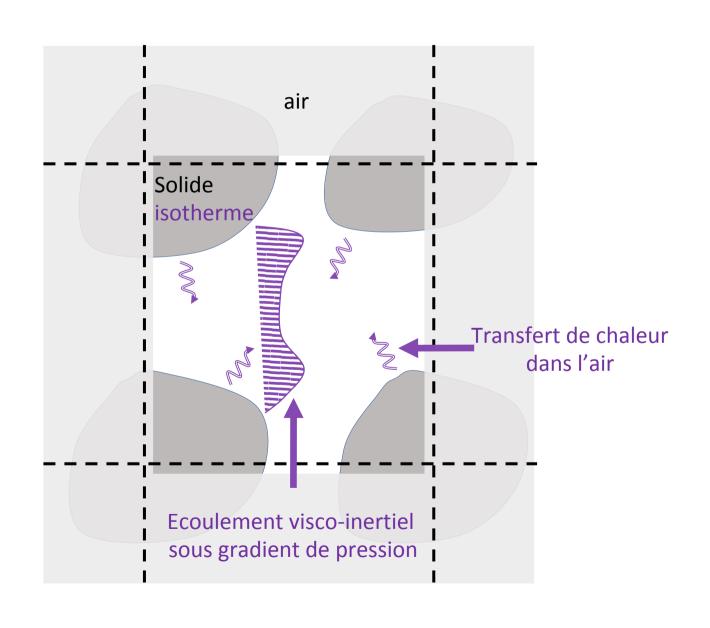
Univ. Lyon, Entpe, UMR CNRS 5513, Vaulx-en-Velin Universitad Austral, Instituto de Acoustica, Valdivia,

3ème colloque du GdR MecaWave 8-12 mai 2023 Centre IGESA, 83400 Porquerolles

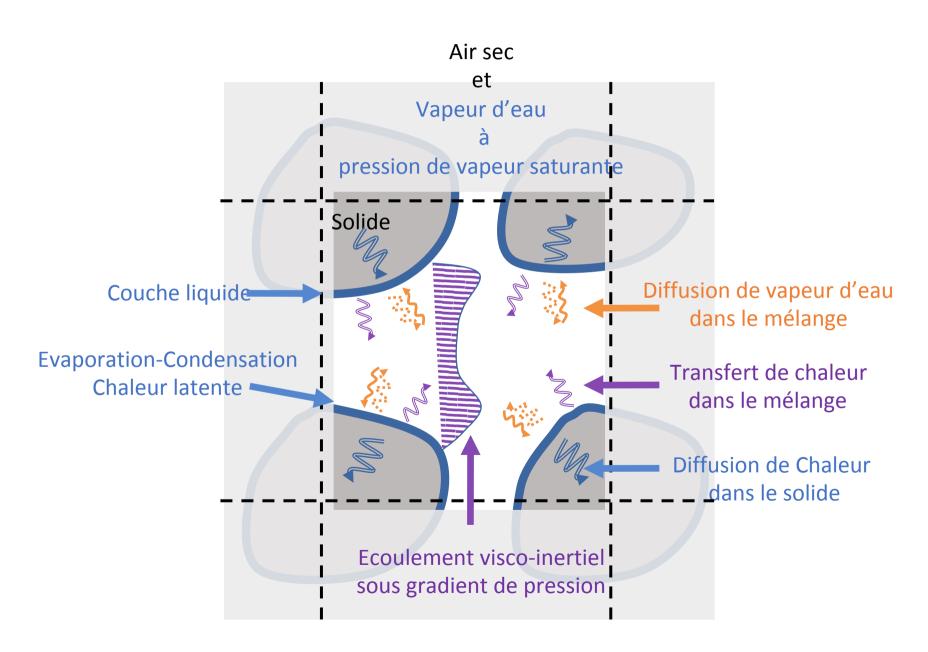
Acoustique en Milieu poreux humide



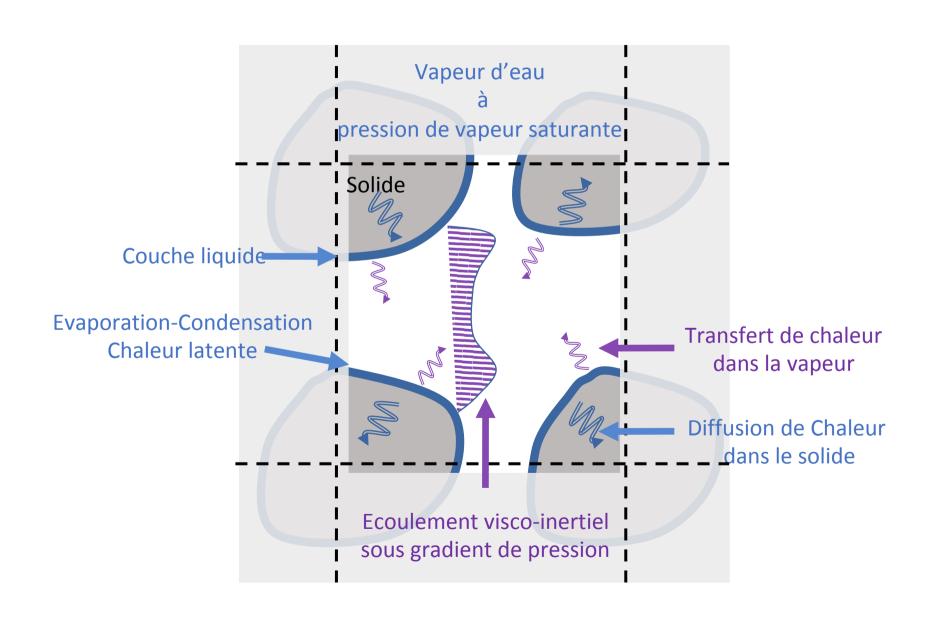
Physique des ondes en milieu sec



Physique en milieu humide



Milieu saturé en vapeur d'eau



Le système d'équations classique

Perturbation en régime harmonique e^{+iωt}

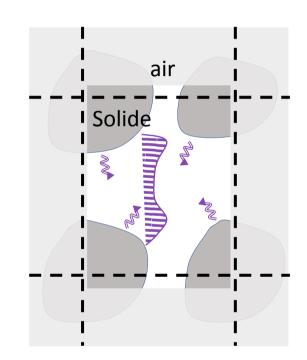
$$\mathbf{div}(\boldsymbol{\sigma}) = i\omega \rho^{e} \mathbf{v}$$

$$\boldsymbol{\sigma} = 2\eta \mathbf{D}(\mathbf{v}) - p\mathbf{I}$$

$$\rho^{e} \operatorname{div}(\mathbf{v}) + i\omega \rho = 0$$

$$-\operatorname{div}(\kappa \mathbf{grad} \tau) + i\omega \rho^{e} c_{p} \tau = i\omega p$$

$$\frac{p}{P^{e}} = \frac{\rho}{\rho^{e}} + \frac{\tau}{T^{e}}$$



Les équations de changement de phase

Clapeyron et chaleur latente $\mathcal L$

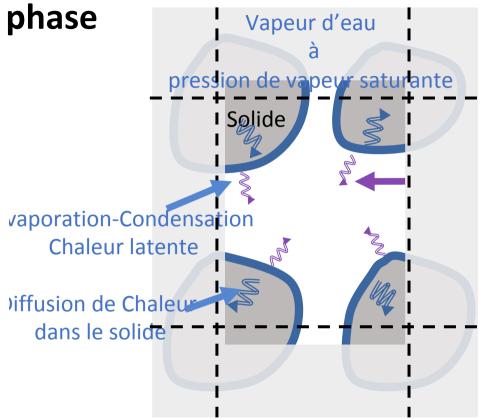
$$au = au_w = au_\Gamma \;\; = \;\; p_v rac{T^e}{\mathcal{L}
ho_v^e}$$

$$(-\kappa_w \mathbf{grad} au_w + \kappa \mathbf{grad} au).\mathbf{n} = -\mathcal{L}\mathbf{j}.\mathbf{n}$$

$$-\operatorname{div}(\kappa_{ws}\operatorname{\mathbf{grad}}\tau_{ws}) + i\omega(\rho c)_{ws}\tau_{ws} = 0$$

Vitesse à l'interface Γ

$$\mathbf{v}_w = \mathbf{0}$$
 $(\mathbf{v} - \mathbf{v}_w).\mathbf{n} = (\frac{1}{\rho_v^e} - \frac{1}{\rho_w})\mathbf{j}.\mathbf{n}$ $\mathbf{v}.\mathbf{n} = \frac{1}{\rho_v^e}\mathbf{j}.\mathbf{n}$



Analyse physique
$$\, arepsilon = rac{l}{L} << 1 \,$$

Acoustique à grande longeur d'onde : L = $\Lambda/2\pi$

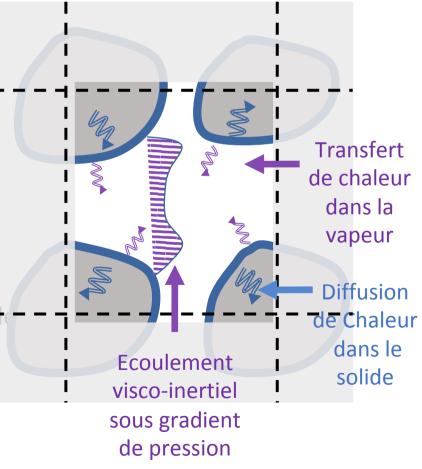
$$\operatorname{\mathbf{grad}}(p) = O(\frac{p}{L})$$
 ; $\operatorname{div}(\mathbf{v}) = O(\frac{v}{L})$

Quantités oscillant à l'échelle des pores : $\ell << \Lambda/2\pi$

Temperature Vitesse Masse volumique

Contrastes

Conductivité thermique vapeur << eau/solic Masse volumique vapeur << eau Vitesse sur Γ << Vitesse dans $\Omega_{\rm g}$



Homogénéisation

Procédure usuelle par développement asymptotique

en

puissance de ϵ

des

variables exprimées en double échelle x, y = ε^{-1} x

Système renormalisé en double échelles x, y = ε^{-1} x

$$\begin{array}{rcl} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\Delta_x(q) = O(\frac{q}{L^2}) = O(\frac{q}{L^2}) \frac{\ell^2}{L^2} = O(\frac{q}{\ell^2}) \varepsilon^2$$

 $\kappa \mathbf{grad} \tau . \mathbf{n} \ll -\kappa_w \mathbf{grad} \tau_w \approx \mathcal{L} \mathbf{j} . \mathbf{n}$

$$d(S\rho^{e}|v|)/S\rho^{e}|v| \approx \ell/L = \varepsilon$$

$$d(S\rho^{e}|v|) \approx |j|\Gamma$$

$$|v|_{\Gamma}/|v| \approx |j|\Gamma/S\rho^{e}|v| \approx \ell/L = \varepsilon$$

Loi de Darcy dynamique

Ordre dominant

$$\operatorname{grad}_{y} p^{(0)} = 0$$
 ; $p^{(0)} = P(\mathbf{x})$

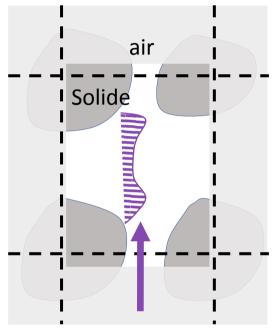
Ordre suivant

$$-\mathbf{grad}_{y}p^{(1)} - \mathbf{grad}_{x}P + \eta \triangle_{y}\mathbf{v}^{(0)} = i\omega \rho^{e}\mathbf{v}^{(0)}$$

$$\operatorname{div}_{y}(\mathbf{v}^{(0)}) = 0$$

$$\mathbf{v}^{(0)} = \mathbf{0}$$

$$p^{(1)}; \mathbf{v}^{(0)} : \Omega - \operatorname{periodic}$$



Ecoulement visco-inertiel sous gradient de pression

Résolution classique

$$\mathbf{v}^{(0)}(\mathbf{x}, \mathbf{y}) = -\mathbf{k}(\omega, \mathbf{y})\mathbf{grad}_x P$$
 soit $V(\mathbf{x}) = \langle \mathbf{v}^{(0)} \rangle = -\mathbf{K}(\omega)\mathbf{grad}_x P$

Le changement de phase n'affecte pas la loi de Darcy dynamique

Température d'interface eau-vapeur

Equilibre liquide vapeur : Relation de Clapeyron

$$au^{(0)} = au_w^{(0)} = T_{\Gamma}(\mathbf{x}) = P(\mathbf{x}) \frac{T^e}{\mathcal{L}\rho_v^e}$$
 on Γ

Uniforme \neq 0 sur Γ

Vapeur - Transfert thermique

Ordre dominant

$$-\operatorname{div}_{y}(\kappa \operatorname{\mathbf{grad}}_{y} \tau^{(0)}) + i\omega \rho^{e} c_{p} \tau^{(0)} = i\omega P \text{ in } \Omega_{g}$$

$$\tau^{(0)} = T_{\Gamma} \text{ on } \Gamma$$

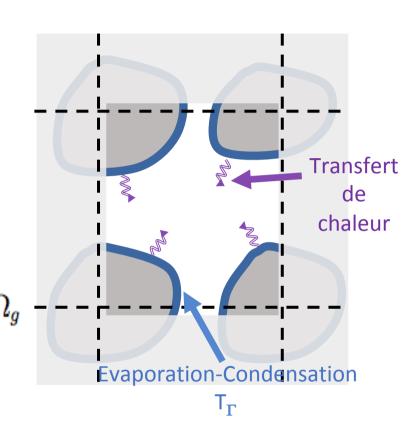
$$\tau^{(0)} : \Omega - \operatorname{periodic}$$

Résolution classiqu $\widetilde{ au} = au^{(0)} - T_{\Gamma}$

$$-\mathrm{div}_y(\kappa\mathbf{grad}_y\widetilde{ au}) + i\omega\rho^e c_p\widetilde{ au} = i\omega(P - \rho^e c_pT_\Gamma)$$
 in Ω_g
 $\widetilde{ au} = 0$ on Γ
 $\widetilde{ au} : \Omega - \mathrm{periodic}$

Solution particulière complexe

$$-\mathrm{div}_y(\mathbf{grad}_y heta) - rac{i\omega
ho^e c_p}{\kappa} heta = 1 ext{ in } \Omega_g$$
 $heta = 0 ext{ on } \Gamma$ $heta : \Omega - \mathrm{periodic}$



Vapeur - Température et masse volumique

Température

$$au^{(0)} = T_{\Gamma} + (rac{P}{
ho^e c_p} - T_{\Gamma}) rac{i\omega
ho^e c_p heta(\mathbf{y})}{\kappa}$$

Masse volumique

$$\frac{\rho^{(0)}}{\rho^e} = \frac{P}{P^e} - \frac{\tau^{(0)}}{T^e} = \frac{P}{P^e} - \frac{T_{\Gamma}}{T^e} - (\frac{P}{\rho^e c_p T^e} - \frac{T_{\Gamma}}{T^e}) \frac{i\omega \rho^e c_p \theta(\mathbf{y})}{\kappa}$$

$$\langle \frac{\rho^{(0)}}{\rho^e} \rangle = \frac{P}{P^e} - \frac{T_{\Gamma}}{T^e} - (\frac{P}{\rho^e c_p T^e} - \frac{T_{\Gamma}}{T^e}) \frac{i\omega \rho^e c_p \langle \theta \rangle}{\kappa}$$

Système eau & solide - Transfert

thermique

Ordre dominant

$$-\operatorname{div}_{y}(\kappa_{ws}\operatorname{\mathbf{grad}}_{y}\tau_{ws}^{(0)}) + i\omega(\rho c)_{ws}\tau_{ws}^{(0)} = 0 \text{ in } \Omega_{ws}$$

$$\tau_{ws}^{(0)} = T_{\Gamma} \text{ on } \Gamma$$

$$\kappa_{ws}\operatorname{\mathbf{grad}}_{y}\tau_{ws}^{(0)}.n \text{ and } \tau_{ws}^{(0)} : \text{ continuous on } \Gamma_{ws}$$

 $\tau_{ws}^{(0)}$: Ω – periodic

Résolution

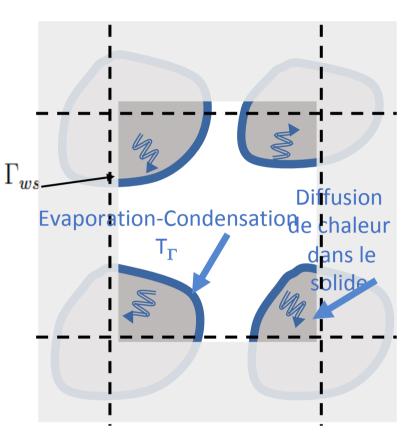
$$\tau_{ws}^{(0)} = T_{\Gamma}(1 - i\omega \langle \rho c \rangle_{ws} \frac{\Theta(\mathbf{y})}{\kappa_w})$$

Solution particulière complexe Ω -periodic

$$-\operatorname{div}_{y}(\frac{\kappa_{ws}}{\kappa_{w}}\operatorname{\mathbf{grad}}_{y}\Theta) + \frac{i\omega(\rho c)_{ws}}{\kappa_{w}}\Theta = \frac{(\rho c)_{ws}}{\langle \rho c \rangle_{ws}} \quad \text{in} \quad \Omega_{ws},$$

$$\Theta = 0 \quad \text{on} \quad \Gamma$$

 $\kappa_{ws} \mathbf{grad}_y \Theta.n$ and Θ : continuous on Γ_{ws}



Flux de masse changeant de phase

Température

$$\tau_{ws}^{(0)} = T_{\Gamma}(1 - i\omega \langle \rho c \rangle_{ws} \frac{\Theta(\mathbf{y})}{\kappa_w})$$

Flux local de chaleur

$$-\mathcal{L}\mathbf{j}^{(0)}.\mathbf{n} = -\kappa_w\mathbf{grad}_y au_w^{(0)}.\mathbf{n}$$

Masse changeant de phase dans Ω

$$\int_{\Gamma} \mathbf{j}^{(0)} \cdot \mathbf{n} ds = \frac{1}{\mathcal{L}} \int_{\Gamma} \kappa_{w} \mathbf{grad}_{y} \tau_{w}^{(0)} \cdot \mathbf{n} ds$$

$$= \frac{1}{\mathcal{L}} \int_{\Omega_{ws}} i\omega(\rho c)_{ws} \tau_{ws}^{(0)} dv = \frac{T_{\Gamma}}{\mathcal{L}} i\omega \langle \rho c \rangle_{ws} \left(1 - \frac{i\omega \langle \rho c \Theta \rangle_{ws}}{\kappa_{w}}\right) \Omega_{ws}$$

Conservation de la masse

Ordre dominant : incompressibilité $\operatorname{div}_y(\mathbf{v}^{(0)}) = 0$

Premier ord

$$\mathbf{v}^{(1)}.\mathbf{n} = \frac{1}{\rho^e}\mathbf{j}^{(0)}.\mathbf{n}$$
 on Γ

$$\operatorname{div}_y(\mathbf{v}^{(1)}) + \operatorname{div}_x(\mathbf{v}^{(0)}) + i\omega \frac{
ho^{(0)}}{
ho^e} = 0 \quad \text{in} \quad \Omega_g$$

Par intégration

$$\int_{\Omega_g} \operatorname{div}_y(\mathbf{v}^{(1)}) d\mathbf{v} + \int_{\Omega_g} \operatorname{div}_x(\mathbf{v}^{(0)}) d\mathbf{v} + \int_{\Omega_g} i\omega \frac{\rho^{(0)}}{\rho^e} d\mathbf{v} = 0$$

$$rac{1}{\Omega_g} \int_{\Gamma} rac{1}{
ho^e} \mathbf{j}^{(0)} \cdot \mathbf{n} \mathrm{ds} + \mathrm{div}_x(\mathbf{V}) + i\omega \langle rac{
ho^{(0)}}{
ho^e}
angle = 0$$

Compressibilité effective

Rappel expressions de T_{Γ} , ρ et j

$$\begin{split} \frac{T_{\Gamma}}{T^{e}} &= \frac{P}{P^{e}} \frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} \\ \langle \frac{\rho^{(0)}}{\rho^{e}} \rangle &= \frac{P}{P^{e}} - \frac{T_{\Gamma}}{T^{e}} - (\frac{P}{\rho^{e}c_{p}T^{e}} - \frac{T_{\Gamma}}{T^{e}}) \frac{i\omega\rho^{e}c_{p}\langle\theta\rangle}{\kappa} \\ \frac{1}{\Omega_{g}} \int_{\Gamma} \frac{1}{\rho_{v}^{e}} \mathbf{j}^{(0)}.\mathbf{n} \mathrm{d}s &= i\omega \frac{T_{\Gamma}}{\mathcal{L}\rho_{v}^{e}} \langle\rho c\rangle_{ws} \left(1 - \frac{i\omega\langle\rho c\Theta\rangle_{ws}}{\kappa_{w}}\right) \frac{\Omega_{ws}}{\Omega_{g}} \end{split}$$

Effet de changement de phase

$$\operatorname{div}_{x}(\mathbf{V}) = -i\omega \frac{P}{P^{e}} \left(1 - \frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} \left(1 + \left(\frac{\mathcal{L}\rho_{v}^{e}}{\rho^{e}c_{p}T^{e}} - 1 \right) \frac{i\omega\rho^{e}c_{p}\langle\theta\rangle}{\kappa} \right) \right)$$

$$-i\omega \frac{P}{P^{e}} \left(\frac{P^{e}T^{e}\langle\rho c\rangle_{ws}}{(\mathcal{L}\rho_{v}^{e})^{2}} \left(1 - \frac{i\omega\langle\rho c\Theta\rangle_{ws}}{\kappa_{w}} \right) \frac{\Omega_{ws}}{\Omega_{g}} \right)$$

Quantification

$$\operatorname{div}_{x}(\mathbf{V}) = -i\omega \frac{P}{P^{e}} \left(1 - \frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} \left(1 + \left(\frac{\mathcal{L}\rho_{v}^{e}}{\rho^{e}c_{p}T^{e}} - 1 \right) \frac{i\omega\rho^{e}c_{p}\langle\theta\rangle}{\kappa} \right) \right)$$

$$-i\omega \frac{P}{P^{e}} \left(\frac{P^{e}T^{e}\langle\rho c\rangle_{ws}}{(\mathcal{L}\rho_{v}^{e})^{2}} \left(1 - \frac{i\omega\langle\rho c\Theta\rangle_{ws}}{\kappa_{w}} \right) \frac{\Omega_{ws}}{\Omega_{g}} \right)$$

$$\gamma = 1.4$$

$$\mathcal{L} = 22.5 \times 10^5 \text{ J/kg}$$

$$| \gamma = 1.4$$

$$\frac{P^{e}T^{e}\langle\rho c\rangle_{ws}}{(\mathcal{L}\rho_{v}^{e})^{2}} = \left(\frac{P^{e}}{\mathcal{L}\rho_{v}^{e}}\right)^{2} \frac{\langle\rho c\rangle_{ws}}{\rho^{e}c_{p}} \frac{\gamma}{\gamma - 1} \approx 8$$

$$\frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} = \frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} = 3.710^{-2}$$

$$\frac{\mathcal{L}\rho_{v}^{e}}{\rho^{e}c_{p}T^{e}} = \frac{\mathcal{L}\rho_{v}^{e}}{P^{e}} \frac{\gamma - 1}{\gamma} = 7.7$$

Parametres	Liquid	Vapor	Solid
Density ρ^e [kg/m ³]	10 ³	1.2	2.5×10^{3}
Bulk modulus K [Pa]	2 10 ⁹	1.4×10^5	40×10^{9}
Dynamic viscosity μ [Pa.s]	10^{-3}	20×10^{-6}	
Kinematic viscosity ν [m ² /s]	10^{-6}	15×10^{-6}	
Conductivity k [W/K.m]	0.6	0.026	3
Heat capacity C_p [J/K.kg]	4.18×10^{3}	10^{3}	0.8×10^{3}
Diffusivity d [m ² /s]	1.4×10^{-7}	2.1×10^{-5}	1.5×10^{-6}

Dépendance fréquentielle

$$\operatorname{div}_{x}(\mathbf{V}) = -i\omega \frac{P}{P^{e}} \left(1 - \frac{P^{e}}{\mathcal{L}\rho_{v}^{e}} \left(1 + \left(\frac{\mathcal{L}\rho_{v}^{e}}{\rho^{e}c_{p}T^{e}} - 1 \right) \frac{i\omega\rho^{e}c_{p}\langle\theta\rangle}{\kappa} \right) \right)$$
$$-i\omega \frac{P}{P^{e}} \left(\frac{P^{e}T^{e}\langle\rho c\rangle_{ws}}{(\mathcal{L}\rho_{v}^{e})^{2}} \left(1 - \frac{i\omega\langle\rho c\Theta\rangle_{ws}}{\kappa_{w}} \right) \frac{\Omega_{ws}}{\Omega_{g}} \right)$$

$$\begin{cases} \langle \theta \rangle \to \theta_0 = O(\ell_g)^2 & \text{when} \quad \omega \ll \omega_g = \frac{\kappa}{\rho^e c_p \theta_0} \approx \frac{2.10^{-5}}{(\ell_g)^2} \\ \frac{i\omega \rho^e c_p \langle \theta \rangle}{\kappa} \to 1 & \text{when} \quad \omega \gg \omega_g = \frac{\kappa}{\rho^e c_p \theta_0} \end{cases}$$

Quasi-isotherme

Quasi-adiabatique

$$\begin{cases} \langle\Theta\rangle \to \Theta_0 = O(\ell_s)^2 & \text{when} \quad \omega \ll \omega_s = \frac{\kappa_s}{(\rho^e c_p)_s \Theta_0} \approx \frac{1.510^{-6}}{(\ell_s)^2} & \text{Compressibilit\'e x 9} \\ \frac{i\omega \langle \rho c\Theta\rangle_{ws}}{\kappa_w} \to 1 & \text{when} \quad \omega \gg \omega_s = \frac{\kappa_s}{(\rho^e c_p)_s \Theta_0} & \text{Effet n\'egligeable} \end{cases}$$

$$\frac{i\omega\langle\rho c\Theta\rangle_{ws}}{\kappa_w} \to 1$$
 when

$$\omega\gg\omega_s=rac{\kappa_s}{(
ho^ec_p)_s\Theta_0}$$

Milieu à 100% Humidité



Approche en Faible diffusion

Pression de vapeur saturante P_v^e à T^e : Rankine

Equation d'éta
$$rac{p_v}{P_v^e} = rac{
ho_v}{
ho_v^e} + rac{ au}{T^e}$$

Ordre domina
$$\frac{p_v^{(0)}}{P_v^e} - \frac{P}{P^e} = \frac{\rho_v^{(0)}}{\rho_v^e} - \frac{\rho^{(0)}}{\rho^e}$$

$$rac{P_{sat}(T^e)}{P_{atm}} = f_R(T^e)$$
 $0.8 \quad \ln(rac{P_{sat}(T^e)}{P_{atm}}) = 13.7(1 - rac{T_b}{T^e})$
 $0.4 \quad 0.2 \quad Te$
 $0.4 \quad Te$

Faible diffusior
$$\frac{\rho_v^{(0)}}{\rho^{(0)}} = \frac{\rho_v^e}{\rho^e}$$
 donc $\frac{p_v^{(0)}}{P} = \frac{P_{sat}^e}{P^e} = \frac{P_v(\mathbf{x})}{P(\mathbf{x})} = f_R(T^e)$

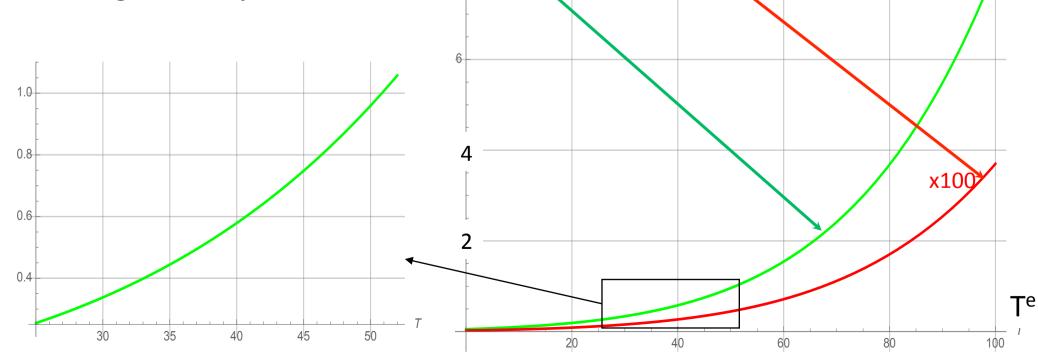
Clapeyron sur
$$au^{(0)} = T_{\Gamma}(\mathbf{x}) = P_v(\mathbf{x}) \frac{T^e}{\mathcal{L}\rho_v^e} = f_R(T^e) P(\mathbf{x}) \frac{T^e}{\mathcal{L}\rho_v^e}$$
 on Γ

Compressibilité effective à T^e et 100% Humidité

$$\operatorname{div}_{x}(\mathbf{V}) = -i\omega \frac{P}{P^{e}} \left(1 - \frac{f_{R}(T^{e})P^{e}}{\mathcal{L}\rho_{v}^{e}} \left(1 + \left(\frac{\mathcal{L}\rho_{v}^{e}}{\rho^{e} s_{p} T^{e} f_{R}(T^{e})} - 1 \right) \frac{i\omega \rho^{e} c_{p} \langle \theta \rangle}{\kappa} \right) \right)$$

$$-i\omega \frac{P}{P^{e}} \left(\frac{f_{R}(T^{e})P^{e} T^{e} \langle \rho c \rangle_{ws}}{(\mathcal{L}\rho_{v}^{e})^{2}} \left(1 - \frac{i\omega \langle \rho c \Theta \rangle_{ws}}{\kappa_{w}} \right) \frac{\Omega_{ws}}{\Omega_{g}} \right)$$

Effet de changement de phase selon Te



Effet notable à forte température

Conclusion

Nette dépendence frequentielle

Dissipation additionelle

Rôle du solide

Paramètres adimensionels du phénomène

Confrontation expérientale ?

Intégrer la diffusion vapeur-air ?

Quelques références

- Auriault, J.-L. and Boutin, C.: 2001, Waves in bubbly liquids with phase change, *Int. J. Eng. Sci.*, **39**, 503–527.
- Boutin, C. and Auriault, J.-L.: 1993, Acoustics of a bubbly fluid at large bubble concentration, *Eur. J. Mech. B/Fluids* **12**(3), 367–399.
- Herskowitz, M., Levitsky, S. and Shreiber I.: 1999, Acoustic waves in a liquid-filled bed with microbubbles, *Acustica* 85, 793–799.
- Nakoryakov, V. E., Pokusaev, B. G. and Shreiber, I. R.: 1993, Wave Propagation in Gas-liquid Media, CRC Press, Boca Raton.
- R. Venegas and C. Boutin, "Acoustics of sorptive porous materials," Wave Motion 68, 162–181 (2017).