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Metasurfaces in nanophotonics
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t simulations

Electromagnetic transition conditions

nx[E] =0 nassl - lin
n-[D] =0 ep T,
n-[B] =0

nx[E] =7

V x E = —iwB nx [H] =7

V x H = iwD n-[D] =7

V-D=0 n-[B] =7

namcatalin V-B=0 el ie,oim,o
E_, o
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Surfacic material properties

We assume than the susceptibilities in the whole domain are given by :

— — ) ex—1 in D
X, = X+ Kugls with XE = { s+-1in D,
with ds the Dirac distribution on the interface S.

You can see this decomposition as the limit of the first order expansion of
the susceptibilities when the thickness of the metasurface tends to zero.

This also means that :

{iep} =m and ?670 x h

where h is the thickness of the metasurface. 5
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GSTC Derivation

Finding the jump conditions verified by the fields is achieved by injecting the
decompositions into Maxwell’s equations :

V x E = —iwB, Xe = XF + Xe 005
V x H=iwD, injection A=A*+ Agds for A=E,H,D,B

— (X (anisotropic, linear)
V-D=0, D (iCe +1)E Constitutive relations
V-B=0. B =(Xm+1)H

This lead to the following Generalized Sheet Transition Conditions :
nx [E] = V) x (Xeo {E}) | — iwpo (Xmo {H}) r

n x [H] = V| x (?m,o {H})l + iweo (?e,o {E})” :
n-[0] = <oV - (Yeo (E})
n-[B] = oV - (Xmo {H})H .
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Susceptibility synthesis

Several physicists considered these transition conditions as a way to
synthesize new metasurfaces.

@ Using some "physical intuitions", we can assume that the
susceptibilities are of the following form :

- co 0 0 - mo 0 0
Ye,o = 0 X}e/},/O 0 and y,mo = 0 X}rln{,O 0
0 0 0 0 0 O

o With this assumption we have :

n X [E] = —iwpo (Xm,o {H})H and n x [H] = +iweg (ie,o {E})H .

@ If we constrain the fields above and below the metasurface, we have :

_ nx[E]-x
Xm0 = i {H} - x
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Inversion method : deflector

E, = 6ik(sin(§)$+cos(%)z)

T g —Electric susceptibility, xx (real part) —Magnetic susceptibllity, xx (real part)
w d Electric susceptibllity, yy (real part) | 4 Magnetic susceptibility, yy (real part)
\ —Electric susceptibility, xx (imaginary part) —Magnetic susceptibility, xx (imaginary part)
\\ ' ] Electric susceptibility, yy (imaginary part) 5| |- Magnetic susceptibilty, yy (imaginary part)
!
|
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Fig. Deflecting a normal incident plane wave by 7.
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Inversion method : lens

E; = %J()(}"' Va2 + (2= f)?)

—Electric susceptibility, xx (real part) —Magnetic susceptibility, xx (real part)
Electric susceptiblility, yy (real part) Magnetic susceptibility, yy (real part)
1.5 Electric susceptibility, xx (imaginary part) | 15 Magnetic susceptibility, xx (imaginary part) |
Electric susceptibility, yy (imaginary part) Magnetic susceptibility, yy (imaginary part)|
1 1f

1 ] 1
15 15
L ikz -2 2 |
Ea- =e -5 0 5 -5 0 5

Fig. “Perfect” lens making normal incident plane wave converge at a focal point.

Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021 7/30



Introduction on nt simulations
0000000e

Incomming plane wave

Fig. Cloaking system where susceptibilities are synthesized in such a way that the
reflected field obtained when injecting a plane wave on the "cat" is equal to the one
reflected by the "mouse".
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Surfacic homogenization
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Thin homogeneous layer

Before considering the microstructuration of a metasurface, let us have a
look to the case of thin (h < A) homogeneous layers :

€ty Mt €4, Ut
n €in, Min n,

Ye,mYm,O

The equivalent transmission conditions are obtained through an asymptotic
expansion of the near and far fields when h — 0.
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Surfacic homogenization
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Asymptotic expansion

We consider the following expansions :

E+4y Ut
(Near field) A(x) = i R (x|, €1) { - L Ax) = i h™ A, (x) (Far field)
n=0 n=0
E_, p—

The “slowly”-varying variables x are used to find the macroscopic behavior
of the fields while the microscopic (or “rapidly”-varying) variables & = x/h
are usefull to describe the near field interactions.

(') No further hypothesis are made on the material properties!
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Matching conditions

We need some conditions to link the values of the near and far fields. A

Taylor expansion at x| = +vh gives :
& =+1/Vh = 40

Ety Mt €4y Myt
Far field for x € R3,x, # 0 ! -Ncar field for (x,£1) € R?
e,
&L =-1/vVh = —

This lead to the following matching conditions :
[[Ao]] = lim ao(XH,fL) —ao(X”,—fJ_) =0 (' )7
§1—+o0
[A:] = lim ag(x), 1) —ar(x), —€1) — 261V {Ao} .
ﬁL*)%*OO
Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021



Surfacic homogenization
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Thin homogeneous layer susceptibilities

If the near fields are known, the transmission conditions verified by the
macroscopic fields are found using [A] ~ [Ao] + h [A1].

In this case, the near fields are given analytically and we find the following
transmission conditions :

n x [E] = —iwpo(pin — 1) {H) }, _ Xewn 0 0

n x [H] = iweo(ein — A {Ey}, teo ( 0 5" 8)
n - [D] = —eo(eim — 1)AV) - {Ey }, _ Xopin 0 0
n-[B] = —po(pin — 1)V - {HH}. Xmo =h ( 8 Xra,in 8)
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Enlarged interface

Instead of jump conditions between z = 40, we can consider the real
thickness of the microstructure and use transition conditions between +h/2.

With a Taylor expansion at +h/2 we get from the GSTCs :
A(x,y,£h/2) = A(x,y,£0) + h/2V | A(x,y,£0) + o(h)

= [Alyn, =[Al+h{VLA} +0o(h) and {A},,={A}+o(h).

n x [E] =V x (ie,o {E})l — iwpo (im,o {H}>H ;
n x [H] = V| x (?m,o {H})l + iweg (?e,o {E})”
The susceptibilities are changed :

-~ -~ e 0 0
y@o — Ye,O + h 0 e 0

0 0 -1
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Example in 2D

bos = h (2225~ b — b
—V-aVu— k’bu=0 a_ +ay
[u] = {9, u} o =h ("”m T2 ° “’i)
[0yu] = k> {bou} — {D.ay dxu} W 1 L+ ﬁ N 1
0+ =
’ din 2 a4t

Real geometry

T
— Transmission
— Reflection

075 e -- Transmission GSTC

=== =1=== Reflection GSTC

y-coordinate [m]

0,25

x-coordinate [im] x-coordinate [m] Angle of incidence [1

Fig. Example : ap = b =1, a5, =2, by, =5, h=0.1 and k =27/ with A = 1.
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Surfacic homogenization
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Surfacic homogenization

For periodic metasurfaces, since the period of the inclusions is proportional
to the thickness of the structure, we need to use both an asymptotic
expansion and homogenization for the tangential components.

&L =+1/Vh = +o0

€ty Kt €ty Mt
Far field for x € R3,x, # 0 ! _Ncar field for (Xufo) cR3
A(x) = Z h" A (x) A(x) = Z han (x|, €)
n=0 e, i n=0
————————————————— e X
&L =-1/vVh = — T h

This time the near fields can’t be solved analytically !
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Surfacic homogenization
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Elementary problems

Injecting the series expansion of the fields into Maxwell equations we find
that the near fields are given by a basis of “elementary problems” &; :

eo(xH,ﬁ) =&, (&)x- Eo(XH,O) +&,(8y- EQ(XH,O) +E&,(8)z- Eo(XH,O)

with
VgXSXZO., Vgxsy:O, VgXSZ:O,
Ve Dy =0, Ve D, =0, Ve D, =0,

D, = coe,Ex, D, = coe,€y, D, = coe, &5,
x-E(§),£0) =1 x-E,(§),+o0) =0 x-E,(§,£0) =0
y-Ex(§),+0) =0 y-E,(§,+x) =1 y-E.(§,+0) =0
z-E,(§),£00) =0 z~£y(£H,:|:oo) =0 z~82(€“,:|:oo) =1
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Surfacic homogenization
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Susceptibilities

0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
-0.2 -0.2

Fig. Example of elementary problems for a periodic microstructure.

/E,SX-xd§7(<s,>fl) /E,Ey-xdE /i’DZ-xdﬁ
D D Jp €0

Xeo = h /arex-yds /erey-yds—«m—l)flvz'yds

D €o
1

fs,gx-zdf /s,é‘y-zdﬁ sz-sz
JD JD Jp €0
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Properties
We can prove some interesting properties on the susceptibilities :

@ Real permittivity/permeabilities (no gain or absorption) lead to real
susceptibilities.

o Symmetry of the tensors : Xe o = X and Xmo = Xom.o-

o If the periodic microstructure is geometrically symmetric :

_ Xeo 0 O — Xeo 0 X _ XZo Xep O
Xeo=| 0 XZoX Xeo=| 0 X5 0 Xeo = | X X}e/yo 0
0 X0 X Xeo 0 X A
Along x (inplane). Along y (inplane). Along z.
@ If same symmetry in x and y then (uniaxial) :
1
_ X1, 00
Xeo=| 0 X, O
2
0 0 X%,
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Surfacic homogenization
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Example in 2D

Geometry  Cell problem 1
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Finite element simulations

00000000

Simulation

In practice, GSTCs does not always lead to analytical solutions.

@ More general sources.
Other elements present in the simulation domain.

()
@ Non-planar (curved) interfaces.
o

Non periodic structures.
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Finite element simulations
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Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

V xV xE—k*nPE=0
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Finite element simulations
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Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

VXVXE-¢—Kkn’E-¢=0
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Finite element simulations
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Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

/VxVxE-¢—k2n2E~¢dx:0
D
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Finite element simulations
[] Te]elololele}

Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

/VxE~Vx¢—k2n2E~¢dx+/ nxVxE -¢ds=0
D oD
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Finite element simulations
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Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

/VxE-de)—kzan-qbdx—iwuo/ nxH-¢pds=0
D oD
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Variational formulation 1/2

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that p, = 1.

/VxE-de)—kzan-qbdx—iwuo/ nxH-¢pds=0
D oD

Thus, on the interface S~ (ST, S are each sides of the GSTCs) we need :
—/WO/ [nxH-¢] ds = —/WO/ n x [H] - {#} +nx {H}-[¢] ds.
S— S—

If we consider the inversion method or thin layers :

. = -1 1
n x [E] = —iwpo (Xmo {H})” = nx {Hp =X on < [E],

n x [H] = +iweo (Xeo {E})H .
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Finite element simulations
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Variational formulation 2/2
For general GSTCs obtaining n x {H} requires an additional step.
nx [E] = V) x (Xeo {E}) | — iwpio (Xmo {H}) -
n x [H] = Vj x (Xmo {H})L + iweo (Xeg {E})” :

Using that E =V x H/(iwege,) and H =V X E/(—iwpg) :

VH X (?V| X {H|}> + k? (im,o {HH}) = iweg IIE]] X 1n,

Vi x (XmoV) x {Ej}) + 2 (oo {Ey}) = who [H] x m,

The GSTCs may be seen as surfacic Maxwell equations for the mean of the
tangential components {EH} , {HH} with electric and magnetic sources.
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Finite element simulations
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2D example : homogenized clovers

-
- ;
e p——— 4
<> 3
: : z
2 2.5 3 35 3 45 5 . 1
- ~ 0
-1
—0.046 0 0 2
New = 0 0312 0 3
0 0 0.604 4
-5

Fig. Simulation of a 2D metasurface with “clover-like" elements in silicon,
substrate of silica, surrounded by air (thickness h = \/10, period d, = A\/10).
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Finite element simulations
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3D example : homogenized cylinders

—0.072 0 0
Yeo=| 0 0142 0
0 0 0142

Fig. Simulation of a 3D metasurface with cylinders in silicon and fully surrounded
by air (thickness h = A/10, period dy = A/10).

=

o 051 157
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Finite element simulations
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3D examples : homogenized cuboids

~0.066 0 0
Xeo = 0 0.196 0.011
0 0.011 0.165

Fig. Simulation of a 3D metasurface with rotated cuboids in silicon and fully
surrounded by air (thickness h = A/10, period dy = A\/10).

Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021 25 /30



Finite element simulations
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Time-dependent examples

/
/
d

J

WMM

Fig. Time-domain conformal GSTC with Discontinuous Galerkin method
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Conclusion
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Fig. Time-domain conformal GSTC with Discontinuous Galerkin method.
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Finite element simulations
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3D time-dependent example

3 o
. " x10
N 2 X0 %

Fig. Time-domain three dimensional GSTC with Discontinuous Galerkin method.
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Conclusion & Perspectives
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Resonant inclusions

Surfacic homogenization

Real geometry

— Transmission
— Reflection
Transmission GSTC
Reflection GSTC

T

12 155 19 225
Wavelength [m]

x-coordinate [m] x-coordinate [m]

Surfacic homogenization

Real geometr

— Transmission

— Reflection

=== Transmission GSTC
=== Reflection GSTC

T

x-coordinate [m| x-coordinate [m]
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Conclusion & Perspectives
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Quasi-periodic & optimization

B i, O~ S ™ e —
L - S Y ——,

| S B = =
m‘
=
—

Fig. Quasi-periodic homogenization gives the (non constant) effective properties
associated with any non-periodic metasurface.
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t simulations Conclusion & Perspectives
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Conclusion

@ GSTCs provides the transition conditions verified by the fields on an
infinitely thin metasurface using surfacic material properties.

@ The homogenization theory gives tools to find such surfacic quantities
associated with a real (deeply subwavelength) metasurface.

@ The finite element method can take into account the boundary
conditions arising from GSTCs, thus reducing the cost of simulating
thin metasurfaces.

— All the methods shown in this presentation can (easily!) be adapted to
any other linear partial differential equations.
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Thanks for your attention!
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