Innía

Simulation of homogenized subwavelength metasurfaces

Nicolas Lebbe¹, Stéphane Lantéri¹, Agnès Maurel², Kim Pham³

¹ Université Côte d'Azur, Inria, France
 ² Institut Langevin, CNRS, ESPCI Paris, France
 ³ IMSIA, CNRS, ENSTA Paris, France

October 4th, 2021

2nd colloquim, GDR MecaWave

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives 000

Metasurfaces in nanophotonics

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Electromagnetic transition conditions

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Surfacic material properties

We assume than the susceptibilities in the whole domain are given by :

$$\overline{\overline{\chi}}_{e} = \chi_{e}^{\pm} + \overline{\overline{\chi}}_{e,0} \delta_{S} \quad \text{with} \quad \chi_{e}^{\pm} = \begin{cases} \varepsilon_{+} - 1 & \text{in} \quad \mathcal{D}_{+} \\ \varepsilon_{-} - 1 & \text{in} \quad \mathcal{D}_{-} \end{cases}$$

with δ_S the **Dirac distribution on the interface** *S*.

You can see this decomposition as the limit of the **first order expansion** of the susceptibilities when the **thickness of the metasurface tends to zero**.

This also means that :

$$\left[\overline{\overline{\chi}}_{e,0}
ight] = \mathrm{m}$$
 and $\overline{\overline{\chi}}_{e,0} \propto h$

where h is the thickness of the metasurface.

$$\mathcal{D}_+$$

 \mathcal{E}_-, μ_-
 \mathcal{D}_-
 \mathcal{D}_+

Introduction 00000000

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

GSTC Derivation

Finding the jump conditions verified by the fields is achieved by injecting the decompositions into Maxwell's equations :

$$\begin{array}{l} \nabla\times\mathbf{E}=-i\omega\mathbf{B}, \\ \nabla\times\mathbf{H}=i\omega\mathbf{D}, \\ \nabla\cdot\mathbf{D}=0, \\ \nabla\cdot\mathbf{B}=0. \end{array} \xrightarrow{\text{injection}} \begin{array}{l} \overline{\overline{\chi}}_e=\chi_e^\pm+\overline{\overline{\chi}}_{e,0}\delta_S \\ \mathbf{A}=\mathbf{A}^\pm+\mathbf{A}_0\delta_S \\ \mathbf{D}=(\overline{\overline{\chi}}_e+1)\mathbf{E} \\ \mathbf{B}=(\overline{\overline{\chi}}_m+1)\mathbf{H} \end{array} \xrightarrow{(anisotropic,\ linear)} \\ \begin{array}{l} \text{Constitutive relations} \end{array}$$

This lead to the following Generalized Sheet Transition Conditions :

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{X}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\perp} - i\omega\mu_{0} \left(\overline{\overline{X}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\parallel},$$
$$\mathbf{n} \times \llbracket \mathbf{H} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{X}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\perp} + i\omega\varepsilon_{0} \left(\overline{\overline{X}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\parallel},$$
$$\mathbf{n} \cdot \llbracket \mathbf{D} \rrbracket = -\varepsilon_{0} \nabla_{\parallel} \cdot \left(\overline{\overline{X}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\parallel},$$
$$\mathbf{n} \cdot \llbracket \mathbf{B} \rrbracket = -\mu_{0} \nabla_{\parallel} \cdot \left(\overline{\overline{X}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\parallel}.$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Susceptibility synthesis

Several physicists considered these transition conditions as a way to **synthesize** new metasurfaces.

• Using some "physical intuitions", we can assume that the susceptibilities are of the following form :

$$\overline{\overline{\chi}}_{e,0} = \begin{pmatrix} \chi_{e,0}^{xx} & 0 & 0 \\ 0 & \chi_{e,0}^{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \overline{\overline{\chi}}_{m,0} = \begin{pmatrix} \chi_{m,0}^{xx} & 0 & 0 \\ 0 & \chi_{m,0}^{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• With this assumption we have :

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = -i\omega\mu_0 \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\parallel} \quad \text{and} \quad \mathbf{n} \times \llbracket \mathbf{H} \rrbracket = +i\omega\varepsilon_0 \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\parallel}.$$

• If we constrain the fields above and below the metasurface, we have :

$$\chi_{m,0}^{xx} = \frac{\mathbf{n} \times \llbracket \mathbf{E} \rrbracket \cdot \mathbf{x}}{-i\omega\mu_0 \{\mathbf{H}\} \cdot \mathbf{x}} \quad \text{etc.}$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Inversion method : deflector

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Inversion method : lens

Fig. "Perfect" lens making normal incident plane wave converge at a focal point.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Inversion method : cloaking

Fig. Cloaking system where susceptibilities are synthesized in such a way that the reflected field obtained when injecting a plane wave on the "cat" is equal to the one reflected by the "mouse".

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Thin homogeneous layer

Before considering the microstructuration of a metasurface, let us have a look to the case of thin $(h\ll\lambda)$ homogeneous layers :

The equivalent transmission conditions are obtained through an **asymptotic** expansion of the near and far fields when $h \rightarrow 0$.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Asymptotic expansion

We consider the following expansions :

(Near field)
$$\mathbf{A}(\mathbf{x}) = \sum_{n=0}^{\infty} h^n \mathbf{a}_n(\mathbf{x}_{\parallel}, \xi_{\perp}) \left\{ \begin{array}{c} & & \\ &$$

The "slowly"-varying variables \mathbf{x} are used to find the macroscopic behavior of the fields while the microscopic (or "rapidly"-varying) variables $\boldsymbol{\xi} = \mathbf{x}/h$ are usefull to describe the near field interactions.

(!) No further hypothesis are made on the material properties!

Surfacic homogenization

Finite element simulations

 ε_+, μ_+

 $\mathcal{E}_{\perp} = -1/\sqrt{h} \to -\infty$

Conclusion & Perspectives

Matching conditions

 ε_+, μ_+

 $\mathbf{x}_{\perp} = \pm \sqrt{h} \to 0$

 ε_{-}, μ_{-}

We need some conditions to link the values of the near and far fields. A Taylor expansion at $\mathbf{x}_{\perp} = \pm \sqrt{h}$ gives : $\xi_{\perp} = +1/\sqrt{h} \to +\infty$

This lead to the following matching conditions :

$$\begin{split} \llbracket \mathbf{A}_0 \rrbracket &= \lim_{\xi_\perp \to +\infty} \mathbf{a}_0(\mathbf{x}_{\parallel}, \xi_\perp) - \mathbf{a}_0(\mathbf{x}_{\parallel}, -\xi_\perp) = 0 \quad (!), \\ \llbracket \mathbf{A}_1 \rrbracket &= \lim_{\xi_\perp \to +\infty} \mathbf{a}_1(\mathbf{x}_{\parallel}, \xi_\perp) - \mathbf{a}_1(\mathbf{x}_{\parallel}, -\xi_\perp) - 2\xi_\perp \nabla_\perp \left\{ \mathbf{A}_0 \right\}. \end{split}$$

Far field for $\mathbf{x} \in \mathbb{R}^3, \mathbf{x}_{\perp} \neq 0$

Near field for $(\mathbf{x}_{\parallel}, \xi_{\perp}) \in \mathbb{R}^3$

Thin homogeneous layer susceptibilities

If the near fields are known, the transmission conditions verified by the macroscopic fields are found using $[\![\mathbf{A}]\!] \simeq [\![\mathbf{A}_0]\!] + h[\![\mathbf{A}_1]\!]$.

In this case, the near fields are given analytically and we find the following transmission conditions :

$$\begin{split} \mathbf{n} \times \llbracket \mathbf{E} \rrbracket &= -i\omega\mu_0(\mu_{\rm in} - 1)h\left\{\mathbf{H}_{\parallel}\right\}, \\ \mathbf{n} \times \llbracket \mathbf{H} \rrbracket &= i\omega\varepsilon_0(\varepsilon_{\rm in} - 1)h\left\{\mathbf{E}_{\parallel}\right\}, \\ \mathbf{n} \cdot \llbracket \mathbf{D} \rrbracket &= -\varepsilon_0(\varepsilon_{\rm in} - 1)h\nabla_{\parallel} \cdot \left\{\mathbf{E}_{\parallel}\right\}, \\ \mathbf{n} \cdot \llbracket \mathbf{B} \rrbracket &= -\mu_0(\mu_{\rm in} - 1)h\nabla_{\parallel} \cdot \left\{\mathbf{H}_{\parallel}\right\}. \end{split} \qquad \overline{\overline{\chi}}_{m,0} = h\begin{pmatrix} \chi_{e,\rm in} & 0 & 0\\ 0 & \chi_{e,\rm in} & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Enlarged interface

Instead of jump conditions between $z = \pm 0$, we can consider the real thickness of the microstructure and use transition conditions between $\pm h/2$.

With a Taylor expansion at $\pm h/2$ we get from the GSTCs :

$$\mathbf{A}(x,y,\pm h/2) = \mathbf{A}(x,y,\pm 0) \pm h/2\nabla_{\perp}\mathbf{A}(x,y,\pm 0) + o(h)$$

$$\Rightarrow \quad \llbracket \mathbf{A} \rrbracket_{\pm h/2} = \llbracket \mathbf{A} \rrbracket + h \{ \nabla_{\perp} \mathbf{A} \} + o(h) \quad \text{and} \quad \{ \mathbf{A} \}_{\pm h/2} = \{ \mathbf{A} \} + o(h).$$

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\perp} - i\omega\mu_0 \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\parallel},$$
$$\mathbf{n} \times \llbracket \mathbf{H} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\perp} + i\omega\varepsilon_0 \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\parallel}$$

The susceptibilities are changed :

$$\overline{\overline{\chi}}_{e,0} \to \overline{\overline{\chi}}_{e,0} + h \left(\begin{array}{ccc} \varepsilon_r & 0 & 0 \\ 0 & \varepsilon_r & 0 \\ 0 & 0 & -1 \end{array} \right)$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Example in 2D

Fig. Example : $a_{\pm}=b_{\pm}=1, a_{\mathrm{in}}=2, b_{\mathrm{in}}=5, h=0.1$ and $k=2\pi/\lambda$ with $\lambda=1.$

Introduction 00000000

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Surfacic homogenization

For periodic metasurfaces, since the period of the inclusions is proportional to the thickness of the structure, we need to use both an asymptotic expansion and homogenization for the tangential components.

This time the near fields can't be solved analytically !

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Elementary problems

Injecting the series expansion of the fields into Maxwell equations we find that the near fields are given by a basis of "elementary problems" \mathcal{E}_i :

$$\mathsf{e}_{0}(\mathsf{x}_{\parallel},\xi) = \mathcal{E}_{x}(\xi)\mathsf{x} \cdot \mathsf{E}_{0}(\mathsf{x}_{\parallel},0) + \mathcal{E}_{y}(\xi)\mathsf{y} \cdot \mathsf{E}_{0}(\mathsf{x}_{\parallel},0) + \mathcal{E}_{z}(\xi)\mathsf{z} \cdot \mathsf{E}_{0}(\mathsf{x}_{\parallel},0)$$

with

6

$$\begin{array}{ll} \nabla_{\boldsymbol{\xi}} \times \boldsymbol{\mathcal{E}}_{x} = 0, & \nabla_{\boldsymbol{\xi}} \times \boldsymbol{\mathcal{E}}_{y} = 0, & \nabla_{\boldsymbol{\xi}} \times \boldsymbol{\mathcal{E}}_{z} = 0, \\ \nabla_{\boldsymbol{\xi}} \cdot \boldsymbol{\mathcal{D}}_{x} = 0, & \nabla_{\boldsymbol{\xi}} \cdot \boldsymbol{\mathcal{D}}_{y} = 0, & \nabla_{\boldsymbol{\xi}} \cdot \boldsymbol{\mathcal{D}}_{z} = 0, \\ \boldsymbol{\mathcal{D}}_{x} = \varepsilon_{0}\varepsilon_{r}\boldsymbol{\mathcal{E}}_{x}, & \boldsymbol{\mathcal{D}}_{y} = \varepsilon_{0}\varepsilon_{r}\boldsymbol{\mathcal{E}}_{y}, & \boldsymbol{\mathcal{D}}_{z} = \varepsilon_{0}\varepsilon_{r}\boldsymbol{\mathcal{E}}_{z}, \\ \mathbf{x} \cdot \boldsymbol{\mathcal{E}}_{x}(\boldsymbol{\xi}_{\parallel}, \pm \infty) = 1 & \mathbf{x} \cdot \boldsymbol{\mathcal{E}}_{y}(\boldsymbol{\xi}_{\parallel}, \pm \infty) = 0 & \mathbf{x} \cdot \boldsymbol{\mathcal{E}}_{z}(\boldsymbol{\xi}_{\parallel}, \pm \infty) = 0 \\ \mathbf{y} \cdot \boldsymbol{\mathcal{E}}_{x}(\boldsymbol{\xi}_{\parallel}, \pm \infty) = 0 & \mathbf{z} \cdot \boldsymbol{\mathcal{E}}_{y}(\boldsymbol{\xi}_{\parallel}, \pm \infty) = 0 \\ \end{array}$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives 000

Susceptibilities

Fig. Example of elementary problems for a periodic microstructure.

$$\overline{\overline{\chi}}_{e,0} = h \begin{pmatrix} \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_X \cdot \mathbf{x} \, \mathrm{d}\xi - (\langle \varepsilon_r \rangle - 1) & \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_Y \cdot \mathbf{x} \, \mathrm{d}\xi & \int_{\mathcal{D}} \frac{1}{\varepsilon_0} \mathcal{D}_Z \cdot \mathbf{x} \, \mathrm{d}\xi \\ & \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_X \cdot \mathbf{y} \, \mathrm{d}\xi & \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_Y \cdot \mathbf{y} \, \mathrm{d}\xi - (\langle \varepsilon_r \rangle - 1) \int_{\mathcal{D}} \frac{1}{\varepsilon_0} \mathcal{D}_Z \cdot \mathbf{y} \, \mathrm{d}\xi \\ & \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_X \cdot \mathbf{z} \, \mathrm{d}\xi & \int_{\mathcal{D}} \varepsilon_r \mathcal{E}_Y \cdot \mathbf{z} \, \mathrm{d}\xi & \int_{\mathcal{D}} \frac{1}{\varepsilon_0} \mathcal{D}_Z \cdot \mathbf{z} \, \mathrm{d}\xi \end{pmatrix}$$

Finite element simulations

Conclusion & Perspectives 000

Properties

We can prove some interesting properties on the susceptibilities :

- Real permittivity/permeabilities (no gain or absorption) lead to real susceptibilities.
- Symmetry of the tensors : $\overline{\overline{\chi}}_{e,0} = \overline{\overline{\chi}}_{e,0}^{\top}$ and $\overline{\overline{\chi}}_{m,0} = \overline{\overline{\chi}}_{m,0}^{\top}$.
- If the periodic microstructure is geometrically symmetric :

$$\overline{\overline{\chi}}_{e,0} = \begin{pmatrix} \chi_{e,0}^{xx} & 0 & 0\\ 0 & \chi_{e,0}^{yy} & \chi_{e,0}^{yz}\\ 0 & \chi_{e,0}^{zy} & \chi_{e,0}^{zz} \end{pmatrix} \qquad \overline{\overline{\chi}}_{e,0} = \begin{pmatrix} \chi_{e,0}^{xx} & 0 & \chi_{e,0}^{xz}\\ 0 & \chi_{e,0}^{yy} & 0\\ \chi_{e,0}^{zx} & 0 & \chi_{e,0}^{zz} \end{pmatrix} \qquad \overline{\overline{\chi}}_{e,0} = \begin{pmatrix} \chi_{e,0}^{xx} & \chi_{e,0}^{xy} & 0\\ \chi_{e,0}^{yy} & \chi_{e,0}^{yy} & 0\\ 0 & 0 & \chi_{e,0}^{zz} \end{pmatrix}$$

Along x (inplane). Along y (inplane). Along z.

• If same symmetry in x and y then (uniaxial) :

$$\overline{\overline{\chi}}_{e,0} = \begin{pmatrix} \chi_{e,0}^1 & 0 & 0 \\ 0 & \chi_{e,0}^1 & 0 \\ 0 & 0 & \chi_{e,0}^2 \end{pmatrix}$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Example in 2D

Nicolas Lebbe, 2nd colloquim, GDR MecaWave

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Simulation

In practice, GSTCs does not always lead to analytical solutions.

- More general sources.
- Other elements present in the simulation domain.
- Non-planar (curved) interfaces.
- Non periodic structures.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

$$\nabla \times \nabla \times \mathbf{E} - k^2 n^2 \mathbf{E} = 0$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

$$\nabla \times \nabla \times \mathbf{E} \cdot \boldsymbol{\phi} - k^2 n^2 \mathbf{E} \cdot \boldsymbol{\phi} = 0$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

$$\int_{\mathcal{D}} \nabla \times \nabla \times \mathbf{E} \cdot \phi - k^2 n^2 \mathbf{E} \cdot \phi \, \mathrm{d} \mathbf{x} = 0$$

e

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

$$\int_{\mathcal{D}} \nabla \times \mathbf{E} \cdot \nabla \times \phi - k^2 n^2 \mathbf{E} \cdot \phi \, \mathrm{d}\boldsymbol{x} + \int_{\partial \mathcal{D}} \mathbf{n} \times \nabla \times \mathbf{E} \cdot \phi \, \mathrm{d}\boldsymbol{s} = 0$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

$$\int_{\mathcal{D}} \nabla \times \mathbf{E} \cdot \nabla \times \phi - k^2 n^2 \mathbf{E} \cdot \phi \, \mathrm{d} \mathbf{x} - i \omega \mu_0 \int_{\partial \mathcal{D}} \mathbf{n} \times \mathbf{H} \cdot \phi \, \mathrm{d} \mathbf{s} = 0$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 1/2

The finite element method require the use of the variational formulation associated with Maxwell equations + GSTCs. We consider that $\mu_r = 1$.

$$\int_{\mathcal{D}} \nabla \times \mathbf{E} \cdot \nabla \times \phi - k^2 n^2 \mathbf{E} \cdot \phi \, \mathrm{d} \mathbf{x} - i \omega \mu_0 \int_{\partial \mathcal{D}} \mathbf{n} \times \mathbf{H} \cdot \phi \, \mathrm{d} \mathbf{s} = 0$$

Thus, on the interface S^- (S^+, S^- are each sides of the GSTCs) we need :

$$-i\omega\mu_0\int_{S^-} \llbracket \mathbf{n}\times \mathbf{H}\cdot\phi\rrbracket \,\mathrm{d}\boldsymbol{s} = -i\omega\mu_0\int_{S^-} \mathbf{n}\times\llbracket \mathbf{H}\rrbracket\cdot\{\phi\} + \mathbf{n}\times\{\mathbf{H}\}\cdot\llbracket\phi\rrbracket \,\mathrm{d}\boldsymbol{s}.$$

If we consider the inversion method or thin layers :

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = -i\omega\mu_0 \left(\overline{\overline{\chi}}_{m,0} \{ \mathbf{H} \} \right)_{\parallel} \quad \Rightarrow \quad \mathbf{n} \times \{ \mathbf{H} \} = \mathbf{n} \times \frac{-1}{i\omega\mu_0} \overline{\overline{\chi}}_{m,0}^{-1} \mathbf{n} \times \llbracket \mathbf{E} \rrbracket,$$
$$\mathbf{n} \times \llbracket \mathbf{H} \rrbracket = +i\omega\varepsilon_0 \left(\overline{\overline{\chi}}_{e,0} \{ \mathbf{E} \} \right)_{\parallel}.$$

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Variational formulation 2/2

For general GSTCs obtaining $\mathbf{n}\times\{\textbf{H}\}$ requires an additional step.

$$\mathbf{n} \times \llbracket \mathbf{E} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\perp} - i\omega\mu_0 \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\parallel}, \\ \mathbf{n} \times \llbracket \mathbf{H} \rrbracket = \nabla_{\parallel} \times \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H} \right\} \right)_{\perp} + i\omega\varepsilon_0 \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E} \right\} \right)_{\parallel},$$

Using that $\mathbf{E} = \nabla \times \mathbf{H}/(i\omega\varepsilon_0\varepsilon_r)$ and $\mathbf{H} = \nabla \times \mathbf{E}/(-i\omega\mu_0)$:

$$\begin{aligned} \nabla_{\parallel} \times \left(\frac{\overline{\overline{\chi}}_{e,0}}{\varepsilon_{r}} \nabla_{\parallel} \times \left\{ \mathbf{H}_{\parallel} \right\} \right) + k^{2} \left(\overline{\overline{\chi}}_{m,0} \left\{ \mathbf{H}_{\parallel} \right\} \right) &= i \omega \varepsilon_{0} \left[\left[\mathbf{E} \right] \right] \times \mathbf{n}, \\ \nabla_{\parallel} \times \left(\overline{\overline{\chi}}_{m,0} \nabla_{\parallel} \times \left\{ \mathbf{E}_{\parallel} \right\} \right) + k^{2} \left(\overline{\overline{\chi}}_{e,0} \left\{ \mathbf{E}_{\parallel} \right\} \right) &= \omega \mu_{0} \left[\left[\mathbf{H} \right] \right] \times \mathbf{n}, \end{aligned}$$

The GSTCs may be seen as surfacic Maxwell equations for the mean of the tangential components $\{\mathbf{E}_{\parallel}\}, \{\mathbf{H}_{\parallel}\}$ with electric and magnetic sources.

Nicolas Lebbe, 2nd colloquim, GDR MecaWave

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives 000

2D example : homogenized clovers

Fig. Simulation of a 2D metasurface with "clover-like" elements in silicon, substrate of silica, surrounded by air (thickness $h = \lambda/10$, period $d_x = \lambda/10$).

Surfacic homogenizatio

Finite element simulations

Conclusion & Perspectives

lnría_

3D example : homogenized cylinders

Fig. Simulation of a 3D metasurface with cylinders in silicon and fully surrounded by air (thickness $h = \lambda/10$, period $d_x = \lambda/10$).

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

3D examples : homogenized cuboids

Fig. Simulation of a 3D metasurface with rotated cuboids in silicon and fully surrounded by air (thickness $h = \lambda/10$, period $d_x = \lambda/10$).

Nicolas Lebbe, 2nd colloquim, GDR MecaWave

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Time-dependent examples

Fig. Time-domain conformal GSTC with Discontinuous Galerkin method.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives 000

Time-dependent examples

Fig. Time-domain conformal GSTC with Discontinuous Galerkin method.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

3D time-dependent example

Fig. Time-domain three dimensional GSTC with Discontinuous Galerkin method.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Resonant inclusions

Nicolas Lebbe, 2nd colloquim, GDR MecaWave

October 4th, 2021

28 / 30

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives $0 \bullet 0$

Quasi-periodic & optimization

Fig. Quasi-periodic homogenization gives the (non constant) effective properties associated with any non-periodic metasurface.

Surfacic homogenization

Finite element simulations

Conclusion & Perspectives

Conclusion

- GSTCs provides the transition conditions verified by the fields on an infinitely thin metasurface using surfacic material properties.
- The homogenization theory gives tools to find such surfacic quantities associated with a real (deeply subwavelength) metasurface.
- The finite element method can take into account the boundary conditions arising from GSTCs, thus reducing the cost of simulating thin metasurfaces.

 \rightarrow All the methods shown in this presentation can (easily !) be adapted to any other linear partial differential equations.

Thanks for your attention !

