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Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021 1 / 30



Introduction Surfacic homogenization Finite element simulations Conclusion & Perspectives

Electromagnetic transition conditions
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We assume than the susceptibilities in the whole domain are given by :

χe = χ±e + χe,0δS with χ±e =
{
ε+ − 1 in D+
ε− − 1 in D−

with δS the Dirac distribution on the interface S.

You can see this decomposition as the limit of the first order expansion of
the susceptibilities when the thickness of the metasurface tends to zero.

This also means that :[
χe,0

]
= m and χe,0 ∝ h

where h is the thickness of the metasurface.

Surfacic material properties
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Finding the jump conditions verified by the fields is achieved by injecting the
decompositions into Maxwell’s equations :

∇× E = −iωB,
∇×H = iωD,
∇ ·D = 0,
∇ · B = 0.

injection←−−−−−

χe = χ±e + χe,0δS
A = A± + A0δS for A = E,H,D,B
D = (χe + 1)E
B = (χm + 1)H

}
(anisotropic, linear)

Constitutive relations

This lead to the following Generalized Sheet Transition Conditions :
n× [[E]] = ∇‖ ×

(
χe,0 {E}

)
⊥
− iωµ0

(
χm,0 {H}

)
‖
,

n× [[H]] = ∇‖ ×
(
χm,0 {H}

)
⊥

+ iωε0

(
χe,0 {E}

)
‖
,

n · [[D]] = −ε0∇‖ ·
(
χe,0 {E}

)
‖
,

n · [[B]] = −µ0∇‖ ·
(
χm,0 {H}

)
‖
.

frame 5/28 puis mettre pareil pour helmholtz ?

GSTC Derivation
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Several physicists considered these transition conditions as a way to
synthesize new metasurfaces.

Using some "physical intuitions", we can assume that the
susceptibilities are of the following form :

χe,0 =

 χxx
e,0 0 0
0 χyy

e,0 0
0 0 0

 and χm,0 =

 χxx
m,0 0 0
0 χyy

m,0 0
0 0 0


With this assumption we have :

n× [[E]] = −iωµ0

(
χm,0 {H}

)
‖

and n× [[H]] = +iωε0

(
χe,0 {E}

)
‖
.

If we constrain the fields above and below the metasurface, we have :

χxx
m,0 = n× [[E]] · x

−iωµ0 {H} · x
etc.

Susceptibility synthesis
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Fig. Deflecting a normal incident plane wave by π
4 .

Inversion method : deflector
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Fig. “Perfect” lens making normal incident plane wave converge at a focal point.

Inversion method : lens
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Fig. Cloaking system where susceptibilities are synthesized in such a way that the
reflected field obtained when injecting a plane wave on the "cat" is equal to the one
reflected by the "mouse".

Inversion method : cloaking
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Before considering the microstructuration of a metasurface, let us have a
look to the case of thin (h� λ) homogeneous layers :

−−−−→

The equivalent transmission conditions are obtained through an asymptotic
expansion of the near and far fields when h→ 0.

Thin homogeneous layer
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We consider the following expansions :

{
The “slowly”-varying variables x are used to find the macroscopic behavior
of the fields while the microscopic (or “rapidly”-varying) variables ξ = x/h
are usefull to describe the near field interactions.

( ! ) No further hypothesis are made on the material properties !

Asymptotic expansion
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We need some conditions to link the values of the near and far fields. A
Taylor expansion at x⊥ = ±

√
h gives :

This lead to the following matching conditions :
[[A0]] = lim

ξ⊥→+∞
a0(x‖, ξ⊥)− a0(x‖,−ξ⊥) = 0 ( ! ),

[[A1]] = lim
ξ⊥→+∞

a1(x‖, ξ⊥)− a1(x‖,−ξ⊥)− 2ξ⊥∇⊥ {A0} .

Matching conditions
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If the near fields are known, the transmission conditions verified by the
macroscopic fields are found using [[A]] ' [[A0]] + h [[A1]].

In this case, the near fields are given analytically and we find the following
transmission conditions :

n× [[E]] = −iωµ0(µin − 1)h
{
H‖
}
,

n× [[H]] = iωε0(εin − 1)h
{
E‖
}
,

n · [[D]] = −ε0(εin − 1)h∇‖ ·
{
E‖
}
,

n · [[B]] = −µ0(µin − 1)h∇‖ ·
{
H‖
}
.

χe,0 = h
(
χe,in 0 0
0 χe,in 0
0 0 0

)

χm,0 = h
(
χm,in 0 0
0 χm,in 0
0 0 0

)

Thin homogeneous layer susceptibilities
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Instead of jump conditions between z = ±0, we can consider the real
thickness of the microstructure and use transition conditions between ±h/2.

With a Taylor expansion at ±h/2 we get from the GSTCs :

A(x , y ,±h/2) = A(x , y ,±0)± h/2∇⊥A(x , y ,±0) + o(h)

⇒ [[A]]±h/2 = [[A]] + h {∇⊥A}+ o(h) and {A}±h/2 = {A}+ o(h).

n× [[E]] = ∇‖ ×
(
χe,0 {E}

)
⊥
− iωµ0

(
χm,0 {H}

)
‖
,

n× [[H]] = ∇‖ ×
(
χm,0 {H}

)
⊥

+ iωε0

(
χe,0 {E}

)
‖

The susceptibilities are changed :

χe,0 → χe,0 + h

 εr 0 0
0 εr 0
0 0 −1



Enlarged interface
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−∇ · a∇u − k2bu = 0
[[u]] = {ayy

0 ∂y u}
[[∂y u]] = k2 {b0u} − {∂x axx

0 ∂x u}

b0,± = h
(b− + b+

2 − bin − b±
)

axx
0,± = h

(
ain −

a− + a+

2 + a±
)

ayy
0,± = h

(
1

ain
−

1
a−

+ 1
a+

2 + 1
a±

)

Fig. Example : a± = b± = 1, ain = 2, bin = 5, h = 0.1 and k = 2π/λ with λ = 1.

Example in 2D
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For periodic metasurfaces, since the period of the inclusions is proportional
to the thickness of the structure, we need to use both an asymptotic
expansion and homogenization for the tangential components.

This time the near fields can’t be solved analytically !

Surfacic homogenization
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Injecting the series expansion of the fields into Maxwell equations we find
that the near fields are given by a basis of “elementary problems” E i :

e0(x‖, ξ) = Ex (ξ)x · E0(x‖, 0) + Ey (ξ)y · E0(x‖, 0) + Ez(ξ)z · E0(x‖, 0)

with

∇ξ × Ex = 0,
∇ξ ·Dx = 0,

Dx = ε0εr Ex ,

x · Ex (ξ‖,±∞) = 1
y · Ex (ξ‖,±∞) = 0
z · Ex (ξ‖,±∞) = 0

∇ξ × Ey = 0,
∇ξ ·Dy = 0,

Dy = ε0εr Ey ,

x · Ey (ξ‖,±∞) = 0
y · Ey (ξ‖,±∞) = 1
z · Ey (ξ‖,±∞) = 0

∇ξ × Ez = 0,
∇ξ ·Dz = 0,

Dz = ε0εr Ez ,

x · Ez(ξ‖,±∞) = 0
y · Ez(ξ‖,±∞) = 0
z · Ez(ξ‖,±∞) = 1

Elementary problems
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Fig. Example of elementary problems for a periodic microstructure.

χe,0 = h



∫
D
εr Ex · x dξ − (〈εr 〉 − 1)

∫
D
εr Ey · x dξ

∫
D

1
ε0

Dz · x dξ∫
D
εr Ex · y dξ

∫
D
εr Ey · y dξ − (〈εr 〉 − 1)

∫
D

1
ε0

Dz · y dξ∫
D
εr Ex · z dξ

∫
D
εr Ey · z dξ

∫
D

1
ε0

Dz · z dξ



Susceptibilities
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We can prove some interesting properties on the susceptibilities :

Real permittivity/permeabilities (no gain or absorption) lead to real
susceptibilities.

Symmetry of the tensors : χe,0 = χ
>
e,0 and χm,0 = χ

>
m,0.

If the periodic microstructure is geometrically symmetric :

χe,0 =

(χxx
e,0 0 0
0 χyy

e,0
χyz

e,0
0 χzy

e,0
χzz

e,0

)

Along x (inplane).

χe,0 =

(χxx
e,0 0 χxz

e,0
0 χyy

e,0 0
χzx

e,0 0 χzz
e,0

)

Along y (inplane).

χe,0 =

(
χxx

e,0
χxy

e,0 0
χyx

e,0
χyy

e,0 0
0 0 χzz

e,0

)

Along z.

If same symmetry in x and y then (uniaxial) :

χe,0 =

(χ1
e,0 0 0
0 χ1

e,0 0
0 0 χ2

e,0

)

Properties
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Example in 2D
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In practice, GSTCs does not always lead to analytical solutions.
More general sources.
Other elements present in the simulation domain.
Non-planar (curved) interfaces.
Non periodic structures.

Simulation

Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021 20 / 30



Introduction Surfacic homogenization Finite element simulations Conclusion & Perspectives

The finite element method require the use of the variational formulation
associated with Maxwell equations + GSTCs. We consider that µr = 1.

∇×∇× E− k2n2E = 0

Thus, on the interface S− (S+,S− are each sides of the GSTCs) we need :

−iωµ0

∫
S−

[[n×H · φ]] ds = −iωµ0

∫
S−

n× [[H]] · {φ}+ n× {H} · [[φ]] ds.

If we consider the inversion method or thin layers :

n× [[E]] = −iωµ0
(
χm,0 {H}

)
‖
⇒ n× {H} = n× −1iωµ0

χ
−1
m,0n× [[E]] ,

n× [[H]] = +iωε0
(
χe,0 {E}

)
‖
.

Variational formulation 1/2
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For general GSTCs obtaining n× {H} requires an additional step.

n× [[E]] = ∇‖ ×
(
χe,0 {E}

)
⊥
− iωµ0

(
χm,0 {H}

)
‖
,

n× [[H]] = ∇‖ ×
(
χm,0 {H}

)
⊥

+ iωε0
(
χe,0 {E}

)
‖
,

Using that E = ∇×H/(iωε0εr ) and H = ∇× E/(−iωµ0) :

∇‖ ×

(
χe,0
εr
∇‖ ×

{
H‖
})

+ k2
(
χm,0

{
H‖
})

= iωε0 [[E]]× n,

∇‖ ×
(
χm,0∇‖ ×

{
E‖
})

+ k2
(
χe,0

{
E‖
})

= ωµ0 [[H]]× n,

The GSTCs may be seen as surfacic Maxwell equations for the mean of the
tangential components

{
E‖
}
,
{
H‖
}
with electric and magnetic sources.

Variational formulation 2/2
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Fig. Simulation of a 2D metasurface with “clover-like” elements in silicon,
substrate of silica, surrounded by air (thickness h = λ/10, period dx = λ/10).

2D example : homogenized clovers
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Fig. Simulation of a 3D metasurface with cylinders in silicon and fully surrounded
by air (thickness h = λ/10, period dx = λ/10).

3D example : homogenized cylinders
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Fig. Simulation of a 3D metasurface with rotated cuboids in silicon and fully
surrounded by air (thickness h = λ/10, period dx = λ/10).

3D examples : homogenized cuboids
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Fig. Time-domain conformal GSTC with Discontinuous Galerkin method.

Time-dependent examples

Nicolas Lebbe, 2nd colloquim, GDR MecaWave October 4th, 2021 26 / 30



Introduction Surfacic homogenization Finite element simulations Conclusion & Perspectives

Fig. Time-domain conformal GSTC with Discontinuous Galerkin method.

Time-dependent examples
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Fig. Time-domain three dimensional GSTC with Discontinuous Galerkin method.

3D time-dependent example
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Fig. Example : a± = b± = 1, ain = 0.001, bin = 1, h = 0.1 and k = 2π/λ with
λ = 1.

Resonant inclusions
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Fig. Quasi-periodic homogenization gives the (non constant) effective properties
associated with any non-periodic metasurface.

Quasi-periodic & optimization
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GSTCs provides the transition conditions verified by the fields on an
infinitely thin metasurface using surfacic material properties.
The homogenization theory gives tools to find such surfacic quantities
associated with a real (deeply subwavelength) metasurface.
The finite element method can take into account the boundary
conditions arising from GSTCs, thus reducing the cost of simulating
thin metasurfaces.

→ All the methods shown in this presentation can (easily !) be adapted to
any other linear partial differential equations.

Conclusion
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Thanks for your attention !
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