An asymptotic approach to the elastodynamic homogenization of periodic media

Weizhi LUO
Director: Q.-C. HE

Université Paris-Est
Laboratoire Modélisation et Simulation Multi Echelle
MSME UMR 8208 CNRS, Marne-La-Vallée

November 6, 2018
Outline

1. Background

2. Preliminaries of homogenization theory

3. Willis elastodynamic homogenization theory
 - Homogenization theory
 - Homogenization conditions

4. Asymptotic approaches
 - Motion equations
 - Effective impedance
 - Dispersion relation

5. Conclusion
Background

Metamaterials

Metamaterials are artificial composites with special properties that cannot be found in nature.

Acoustic metamaterial (Liu et al. 2000a)

Optical metamaterial (Pendry et al. 2006b)

Core developments of Willis’ theory

- 1980s, two polarization fields were introduced for a fictional homogeneous comparison (Wills 1980a,b);
- The elastodynamic homogenization theory of Willis was presented in Willis (1997);
- Asymptotic elastodynamic homogenization methods were proposed for periodic media (Bensoussan et al. 1978, Boutin and Auriault 1993, Craster et al. 2010\(^a\));
- Some extensions of Willis’ theory have been proposed. (Milton and Willis 2007, Amirkhizi and Nemat-Nasser 2008\(^b\), Nemat-Nasser et al. 2011, Nassar H. et al. 2015, etc.).

Preliminaries of homogenization theory

Periodic geometry

Consider a lattice \mathcal{L} of the periodic vector space \mathcal{E}. The first Brillouin’s zone T is defined: (same definitions for \mathcal{E}^*, \mathcal{L}^* and T^*)

$$T = \{x \in \mathcal{E} \mid \|x\| < \|x - y\|, y \in \mathcal{L} - \{0\}\}$$

Floquet-Bloch transform

The Floquet-Bloch transform provides the definition

$$f(x) = \int_{k \in T} \tilde{f}_k(x)e^{ik \cdot x} \, dk$$
Motion equation

Using the FB transform for the constitutive relation and the momentum balance

\[(\nabla + ik) \cdot \{C(x) : [(\nabla + ik) \otimes \tilde{u}_k(x)]\}e^{ik \cdot x} + \tilde{f}_k(x)e^{ik \cdot x} = -w^2 \rho(x) \tilde{u}_k(x)e^{ik \cdot x}\]

Effective field

The space average over the unit cell corresponds to the expected value of the wave amplitude at the local region:

\[\langle f(x) \rangle_{FB} = \frac{1}{|T|} \left(\int_{x \in T} \tilde{f}_k(x) dx \right) e^{ik \cdot x} \equiv \langle \tilde{f} \rangle e^{ik \cdot x}\]

Weighted average can be obtained via a random coefficient \(w(x, \alpha)\) with \(\langle w \rangle = 1\) and \(\alpha\) being the portion of each phase in the unit \(T\) (Milton and Willis 2007a):

\[f(x) \equiv \langle w \tilde{f}(x) \rangle e^{ik \cdot x}\]

Homogenization theory

Localization step

The solution of the motion equation has a coupling relation with the effective strain and vector field (Willis 1997a).

\[\tilde{u} = \langle \tilde{u} \rangle + A : \langle \tilde{e} \rangle + B \cdot \langle \tilde{v} \rangle \]

One approach to obtaining the two localization tensors is to introduce an eigen-strain field \(\gamma \) (FB wave expression are available).

\[(\nabla + ik) \cdot \{ C : [(\nabla + ik) \otimes s \tilde{u} - \tilde{\gamma}] \} + \tilde{f} = -w^2 \rho \tilde{u} \]

Green’s function Introduce the Green’s function \(g \) in order to make the homogenization motion equation solvable.

\[(\nabla + ik) \cdot \{ C : [(\nabla + ik) \otimes s g] \} + |T| \delta I = -w^2 \rho g \]

Homogenization step

The effective fields are simply defined as a volume average over the unit body T. The effective constitutive law is specified by

$$\begin{bmatrix} \Sigma \\ P \end{bmatrix} = \begin{bmatrix} C^e & S^1 \\ S^2 & \rho^e \end{bmatrix}_{k,w} \begin{bmatrix} E - \gamma \\ V \end{bmatrix}$$

where the tensor S^1 and S^2 are the third-order coupling tensors, which depend on the couple (k, w):

$$C^e = \langle C \rangle + \langle C : [(\nabla y + ik) \otimes s A] \rangle, \quad S^2 = iw \langle \rho A \rangle$$
$$S^1 = \langle C : [(\nabla y + ik) \otimes s B] \rangle, \quad \rho^e = \langle \rho \rangle I + iw \langle \rho B \rangle$$

The effective relation is independent of the prescribed initial condition.
Homogenization conditions

Virtual work condition The Hill-Mandel relation is still available in the dynamic case:

\[
\int_T \tilde{f}_k \cdot \tilde{u}_k^* dx = \int_T \tilde{F}_k \cdot \tilde{U}_k^*, \quad k \in T
\]

Effective field condition The ”slow wave” wavelength \(\lambda \) is greater than the characteristic length of the unit cell length \(2l \):

\[
\lambda = \left| \frac{2\pi}{k} \right| \geq 2l \quad \Rightarrow \quad |k| \leq \frac{\pi}{l}
\]

Energy condition Effective behavior is intended to describe the macroscopic properties of the composite:

\[
\langle \left[C : (\nabla \otimes^s \tilde{u}) \right] : (\nabla \otimes^s \tilde{u}^*) \rangle \ll \langle \left[C : (ik \otimes^s \tilde{u}) \right] : (ik \otimes^s \tilde{u})^* \rangle
\]

which presents a relation of an approximation condition (Nassar H. et al. 2015\(^a\)):

\[
w^2 \lesssim \max \left(\frac{c_m^m}{\rho^m} \right) \frac{\pi^2}{l_m^2}
\]

Motion equations

Two-scale representation

It allows to research the macroscopic behaviour of a periodic medium at the microscopic scale (Bensoussan et al.1978). Let us introduce macro-x and micro-y with

$$y = \varepsilon^{-1} x$$

The local motion equation expression:

$$\left(\nabla + ik\right) \cdot \left\{ C(y) : \left[(\nabla + ik) \otimes^s \tilde{u}(y) \right] \right\} + \tilde{f} = -w^2 \rho(y) \tilde{u}(y)$$

The strain field expression:

$$\epsilon = \epsilon_x + \frac{1}{\varepsilon} \epsilon_y = \nabla_x \otimes^s u + \frac{1}{\varepsilon} \nabla_y \otimes^s u$$

Motion equations

Simplify the each order motion equation with the series expansion
\(\tilde{u}^\varepsilon = \sum_r \varepsilon^r \tilde{u}^r \), with \(r \in N \):

\[
\varepsilon^{-2} : \quad \nabla_y \cdot [C : (\nabla_y \otimes s \tilde{u}^0)] = 0
\]

\[
\varepsilon^{-1} : \quad \nabla_x \cdot [C : (\nabla_y \otimes s \tilde{u}^0)] + \nabla_y \cdot [C : (\nabla_x \otimes s \tilde{u}^0 + \nabla_y \otimes s \tilde{u}^1)] = 0
\]

\[
\varepsilon^0 : \quad \nabla_x \cdot [C : (\nabla_x \otimes s \tilde{u}^0 + \nabla_y \otimes s \tilde{u}^1)] + \nabla_y \cdot [C : (\nabla_x \otimes s \tilde{u}^1 + \nabla_y \otimes s \tilde{u}^2)] + f = -w^2 \rho u_0
\]

......

\[
\varepsilon^{n-1} : \quad \nabla_x \cdot [C : (\nabla_x \otimes s \tilde{u}^{n-1} + \nabla_y \otimes s \tilde{u}^n)] + \nabla_y \cdot [C : (\nabla_x \otimes s \tilde{u}^n + \nabla_y \otimes s \tilde{u}^{n+1})] = -w^2 \rho u_{n-1} \quad n \in N^* \]
Solutions

Comparing the orders of the parameter ε, we get the solution of the first four equations:

\[
\begin{align*}
\mathbf{u}_0 &= \tilde{U}_0 \\
\mathbf{u}_1 &= \tilde{U}_1 + \mathcal{X}_1 \nabla_x \tilde{U}_0 \\
\mathbf{u}_2 &= \tilde{U}_2 + \mathcal{X}_1 \nabla_x \tilde{U}_1 + \mathcal{X}_2 \nabla_x^2 \tilde{U}_0 + \mathcal{H}_2 \tilde{f} \\
\mathbf{u}_3 &= \tilde{U}_3 + \mathcal{X}_1 \nabla_x \tilde{U}_2 + \mathcal{X}_2 \nabla_x^2 \tilde{U}_1 + \mathcal{X}_3 \nabla_x^3 \tilde{U}_0 + \mathcal{H}_3 \nabla_x \tilde{f}
\end{align*}
\]

where the series matrices \mathcal{H}_i are derived from the density difference of composite materials:

\[
e.g. \quad \nabla_y \cdot [\mathbf{C} : \nabla_y \mathcal{H}_2(y)] \tilde{f} = (\rho \langle \rho \rangle^{-1} - I) \tilde{f}
\]
Assumption

As mentioned earlier, the body force and external volume loading have a large impact on the effective impedance expressions. Therefore, in the absence of body force, the effective impedance can be simplified so as to reduce to a regular solution equivalent to the work of Boutin and Auriault (1993a):

\[\tilde{u} = \sum_{i=0}^{n} \varepsilon^i \mathcal{K}_i \nabla_x (\sum_{i=0}^{n} \varepsilon^i \tilde{U}_i) + O(\varepsilon^{n+1}), \quad \mathcal{K}_0 = I, \quad \nabla_x^0 = I \]

Therefore, the average displacement field takes the form

\[\langle \tilde{u} \rangle = \sum_{i=0}^{n} \varepsilon^i \tilde{U}_i \]

\[\text{---} \]

Effective impedance

Hierarchical motion equation

Using the displacement expansion \(u^\varepsilon = \sum_n \varepsilon^n u_n \) with \(n \in N \),

\[\varepsilon^0 : \quad \tilde{Z}^0 \tilde{U}_0 = \tilde{f} \]
\[\varepsilon^1 : \quad \tilde{Z}^0 \tilde{U}_1 + \tilde{Z}^1 \tilde{U}_0 = \tilde{Z}^1 \tilde{f} \]
\[\varepsilon^2 : \quad \tilde{Z}^0 \tilde{U}_2 + \tilde{Z}^1 \tilde{U}_1 + \tilde{Z}^2 \tilde{U}_0 = \tilde{Z}^2 \tilde{f} \]

Ignoring the higher order small items,

\[Z^2 = (I + \varepsilon\tilde{Z}^1 + \varepsilon^2\tilde{Z}^2)^{-1}(\tilde{Z}^0 + \varepsilon\tilde{Z}^1 + \varepsilon^2\tilde{Z}^2) \]

with

\[\tilde{Z}^n = iw\langle \rho \mathcal{X}_n \rangle iw - ik\langle C(\mathcal{X}_n + \nabla_y \mathcal{X}_{n+1})\rangle ik \cdot (ik)^n, \quad (n = 0, 1, 2, \text{ with } \mathcal{X}_0 = I) \]
\[\tilde{Z}^n = ik\langle C : (\nabla_y \mathcal{H}_{n+1} + \mathcal{H}_n)\rangle ik + iw\langle \rho \mathcal{H}_n \rangle, \quad (n = 1, 2, \text{ with } \mathcal{H}_1 = 0) \]
Displacement series expression

Set the lowest order expression like $u^e = u_0 + O(\varepsilon)$, the lowest order motion equation has been defined by:

$$Z^0 = k \cdot \langle C \rangle \cdot k - w^2 \langle \rho \rangle I$$

With the same way, set $u^e = u_0 + \varepsilon u_1 + \varepsilon^2 u_2 + O(\varepsilon^3)$,

$$Z^2 \in \{ \gamma Z^2_{\text{min}}, \gamma Z^2_{\text{max}} \}$$

$$Z^2_{\text{min}} = \tilde{Z}^0 + \varepsilon \tilde{Z}^1 + \varepsilon^2 \tilde{Z}^2 - \hat{Z}^1 - \varepsilon \hat{Z}^2$$

$$Z^2_{\text{max}} = \tilde{Z}^0 + \varepsilon \tilde{Z}^1 + \varepsilon^2 \tilde{Z}^2 - \hat{Z}^1$$

With,

$$\tilde{Z}^i = iw \langle \rho {\hat{X}}_i \rangle iw - ik \langle C : {\hat{X}}_i \rangle ik \quad \text{with} \quad {\hat{X}}_0 = I$$

$$\hat{Z}^i = ik \langle C : \nabla_y {\hat{X}}_i \rangle ik \quad \text{with} \quad {\hat{X}}_0 = I$$

$$\gamma = I + \varepsilon ik \langle C : \nabla_y {\mathcal{H}}_2 \rangle + \varepsilon^2 (ik \langle C : {\mathcal{H}}_2 \rangle ik - iw \langle \rho {\mathcal{H}}_2 \rangle)$$
Dispersion relation

The motion equation for a simple two phase periodic structure:

\[
E_n \left(\frac{u_{n+1} - u_n}{a} \right) - E_{n-1} \left(\frac{u_n - u_{n-1}}{a} \right) + f_n = -w^2 a \rho_n u_n
\]

According for the periodic boundary conditions

\[
\delta \nu^4 / 4 - \nu^2 + \sin^2 (ak) = 0
\]

with

\[
w_0^2 = \frac{\langle E \rangle}{\langle \rho \rangle} = \frac{4E_1E_2}{a(\rho_1 + \rho_2)(E_1 + E_2)}, \quad w_i^2 = \frac{E_i}{a \rho_i} \quad (\text{with } i = 1, 2)
\]

\[
\delta = \frac{16E_1E_2 \rho_1 \rho_2}{(E_1 + E_2)^2(\rho_1 + \rho_2)^2} = \left(\frac{w_0}{w_1} \right)^2 \left(\frac{w_0}{w_2} \right)^2, \quad \nu^2 = \frac{(E_1 + E_2)(\rho_1 + \rho_2)}{4E_1E_2}(aw)^2 = \left(\frac{w}{w_0} \right)^2
\]
The width of the “bandgap” is largely influenced by the structure of the composite:

\[\nu \in \left[0, \sqrt{\frac{2 - 2\sqrt{1 - \delta \sin^2(ak)}}{\delta}} \right] \cup \left[\sqrt{\frac{2 + 2\sqrt{1 - \delta \sin^2(ak)}}{\delta}}, \frac{2}{\sqrt{\delta}} \right], \quad \forall |k| \leq \frac{\pi}{2a} \]
Rewrite the motion equation in the matrix form.

\[\{ [\nabla]^T [C] [\nabla] - w^2 [\rho] \} [\tilde{u}] = [\mathcal{K}] [\tilde{u}] = \tilde{f} \]

Combine the continuity and periodic conditions for the displacement \(u \) and stress \(\sigma \), and note that \([P][\tilde{u}] = 0\):

\[[\mathcal{K} + P] [\tilde{u}] = [\tilde{f}] \]

The dispersion relation is defined by “\(\det\{[\mathcal{K} + P]\} = 0 \)”.

Get the dispersion relation as in the work of Nassar H. et al. (2016\(^a\)):

\[
\cos(2ka) = \frac{(\sqrt{\rho_1 E_1} + \sqrt{\rho_2 E_2})^2}{4\sqrt{\rho_1 E_1 \rho_2 E_2}} \cos((\sqrt{\frac{\rho_1}{E_1}} + \sqrt{\frac{\rho_2}{E_2}})wa) - \frac{(\sqrt{\rho_1 E_1} - \sqrt{\rho_2 E_2})^2}{4\sqrt{\rho_1 E_1 \rho_2 E_2}} \cos((\sqrt{\frac{\rho_1}{E_1}} - \sqrt{\frac{\rho_2}{E_2}})wa)
\]

FEM solution

The weak form of the integral equation:

\[\int_T \mathbf{C} : \tilde{\varepsilon}(\tilde{\mathbf{u}}) : \tilde{\varepsilon}(\delta \tilde{\mathbf{u}})^* dT - w^2 \int_T \mathbf{\rho} \tilde{\mathbf{u}} \cdot \delta \tilde{\mathbf{u}}^* dT = \int_T \tilde{\mathbf{f}} \cdot \delta \tilde{\mathbf{u}}^* dT \]

Set \(\mathcal{L}_b U_b = 0 \) to represent all the periodic boundary conditions. The global motion equation is defined as:

\[
\begin{pmatrix}
[K] & 0 \\
0 & \mathcal{L}_b
\end{pmatrix}
- w^2
\begin{pmatrix}
[M] & 0 \\
0 & 0
\end{pmatrix}
\begin{bmatrix}
U \\
U_b
\end{bmatrix}
=
\begin{bmatrix}
F \\
0
\end{bmatrix}
\]

The effective impedance has the following dispersion relation:

\[
[K]_{\text{glob}} \mathbf{V} = \lambda [M]_{\text{glob}} \mathbf{V}
\]

where the generalized eigenvalue \(\lambda \) represents the square of the angular frequency \(w^2 \) and \(\mathbf{V} \) stands for the generalized eigenvectors.
Two-layer example

The results of the finite element simulation and the analytical solution are compared.

The Young's modulus \((Pa)\), \(E_1 = 3.0e^8, E_2 = 2.0e^{11}\)

The density \((kg/m^3)\): \(\rho_1 = 1.5e^3, \rho_2 = 3.0e^3\)

The unit characteristic size \(l = 5.0e^{-3}(m)\)
Multi-layer example

Comparison with the results by Nemat-Nasser et Srivastava (2011a).

\[\delta x = 0.0001m \]

\[\delta x = 0.00005m \]

\[\delta x = 0.00002m \]

\[\delta x = 0.00001m \]

Conclusions

- The influence of body force term on the asymptotic effective impedance has been discussed;
- The FEM results has been compared with the analytical results and analysed the influence of mesh size on the numeric result;
- Two higher order asymptotic expressions of the effective impedances have been derived.

Works to be done

- Verify the validity of the high-order effective impedance expressions.
- Study the dynamic homogenization of the motion equation involving the non-uniformly body force function.