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Background

Metamaterials

Metamaterials are artificial

composites with special properties that cannot
be found in nature.

Smm

Acoustic metamaterial (Liu et al. 2000?) Optical metamaterial (Pendry et al. 2006°)

2Zhengyou Liu et al. “Locally resonant sonic materials”. In: science 289.5485 (2000), pp. 1734-1736.
bjohn B Pendry, David Schurig, and David R Smith. “Controlling electromagnetic fields”. In: science 312.5781
(2006), pp. 1780-1782.
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Core developments of Willis' theory

@ 1980s, two polarization fields were introduced for a fictional
homogeneous comparison (Wills 1980a,b);

@ The elastrodynamic homogenization theory of Willis was presented in
Willis (1997);

@ Asymptotic elastodynamic homogenization methods were proposed
for periodic media (Bensoussan et al. 1978, Boutin and Auriault
1993, Craster et al. 2010?);

@ Some extensions of Willis' theory have been proposed. (Milton and
Willis 2007, Amirkhizi and Nemat-Nasser 20082, Nemat-Nasser et al.
2011, Nassar H. et al. 2015, etc.).

?Richard V Craster, Julius Kaplunov, and Aleksey V Pichugin. “High-frequency homogenization for periodic
media”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
Vol. 466. 2120. The Royal Society. 2010, pp. 2341-2362.

bAlireza V Amirkhizi and Sia Nemat-Nasser. “Microstructurally-based homogenization of electromagnetic
properties of periodic media”. In: Comptes Rendus Mecanique 336.1-2 (2008), pp. 24-33.
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Preliminaries of homogenization theory
Periodic geometry

Consider a lattice .Z of the periodic vector space &. The first Brillouin's
zone T is defined : (same definitions for &*, £ and T*)

T={xe&|lxl| <lx—yl,y € £—-{0}}

10
° ° e 2T

A >2T
° ° ° ° fi(x) AW

Floquet-Bloch transform

The Floquet-Bloch transform provides the definition

fx) = [ fulx)e**dy

keT
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Motion equation

Using the FB transform for the constitutive relation and the momentum
balance

(V+ik) - {C(x) : [(V +ik) @ g (x)] }e™* + fr(x)e™* = —w?p (x) g (x) ™

v

Effective field

The space average over the unit cell corresponds to the expected value of
the wave amplitude at the local region :

1 g ikx — )7\ ikx
(F@)ra = 7 ( xeTfk(x)dx> e** = (f)e

Weighted average can be obtained via a random coefficient w(x, &) with
(w) =1 and o being the portion of each phase in the unit 7 (Milton and Willis
2007°) :

fx) = (wfx))e*

2Graeme W Milton and John R Willis. “On modifications of Newton's second law and linear continuum
elastodynamics”. In: Proceedings of the royal society of london A: Mathematical, Physical and Engineering
Sciences. Vol. 463. 2079. The Royal Society. 2007, pp. 855-880.

4
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Homogenization theory

Localization step

The solution of the motion equation has a coupling relation with the
effective strain and vector field (Willis 1997?).

= (@) +A: (8)+B- ()

One approach to obtaining the two localization tensors is to introduce an
eigen-strain field ¥ (FB wave expression are available).

(V+ik)-{C:[(V+ik)@ u—Y}+f=—wpi

Green’s function Introduce the Green's function g in order to make the
homogenization motion equation solvable.

(V+ik)-{C:[(V+ik)2° g} +|T|81 = —w’pg

2John R Willis. “Dynamics of composites”. In: Continuum micromechanics. Springer, 1997, pp. 265-290.

v
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Homogenization step

The effective fields are simply defined as a volume average over the unit
body T. The effective constitutive law is specified by

=l .
P S p kw v
where the tensor ! and §? are the third-order coupling tensors, which

depend on the couple (k,w) :

C°=(C)+(C:[(Vy+ik)2°A]), S§*=iw(pA)
§' = (C:[(Vy+ik)®'B]), p°=(p)I+iw(pB)

The effective relation is independent of the prescribed initial condition.
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Homogenization conditions
Virtual work condition The Hill-Mandel relation is still available in the dynamic case :
fr-iyd :/F Uy, keT
/T S W dx iUk
Effective field condition The "slow wave” wavelength A is greater than the
characteristic length of the unit cell length 2/ :

21 T
=|—|22] = < =
A=|7l>2 Ikl < 5

Energy condition Effective behavior is intended to describe the macroscopic properties
of the composite :

(IC:(Ve*n)]: (V@ u")) < ([C: (ikx &) : (ik®°u)*)
which presents a relation of an approximation condition (Nassar H. et al. 20157) :

m 2
2 G &
w < max(—m)g

?Hussein Nassar, Q-C He, and Nicolas Auffray. “Willis elastodynamic homogenization theory revisited for
periodic media”. In: Journal of the Mechanics and Physics of Solids 77 (2015), pp. 158-178.

4
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Motion equations

Two-scale representation

It allows to research the macroscopic behaviour of a periodic medium at
the microscopic scale (Bensoussan et al.19787). Let us introduce macro-x
and micro-y with

y=¢ x
The local motion equation expression :
(V+ik)-{C(y) : [(V+ik) & a(y)]} + f = —w’p(y)ia(y)

The strain field expression :

1 1
s:ex+geyzvx®su+gvy®su

2Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. “Asymptotic methods for periodic
structures”. In: Stud. Math. Appl 5 (1978).
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Motion equations

Simplify the each order motion equation with the series expansion
ut =Yy, e'u", withre N :

e Yy [C:( y®s )] =0
el Ve lC:(Vyetad)+
V, [C: (Vi@'a’ +Vy2 ') =0
e Vi [C: (V@ @+ Vy@ i)+
Vy-[C:(V

@ i+ V@ @?)]+ f = —wlpug

e Ve [C (Ve + Ve a4
V, [C: (Vi@ u"+Vy@ ") = —w?pu,_; neN*
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Solutions

Comparing the orders of the parameter €, we get the solution of the first
four equations :

uo = Up

u =U + 21 V.0

uy = U + 23V:0, + 25V300 + 6

us = Us + 21V, 0y + 25V20, + 23V300 + A4V . f

where the series matrices % are derived from the density difference of
composite materials :

eg. Vy [C:Vyt0f = (p(p) ' = DF
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Assumption

As mentioned earlier, the body force and external volume loading have a
large impact on the effective impedance expressions. Therefore, in the
absence of body force, the effective impedance can be simplified so as to
reduce to a regular solution equivalent to the work of Boutin and Auriault

(1993?) :
u=Y e 2V} €0)+0("), 2=1 V=1

Therefore, the average displacement field takes the form

n

~ 177
<u> = E e'U;
i=0
2C Boutin and JL Auriault. “Rayleigh scattering in elastic composite materials”. In: International journal of
engineering science 31.12 (1993), pp. 1669-1689.
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Effective impedance

Hierarchical motion equation
Using the displacement expansion u® =Y, €"u, with n € N,

~

80 5 20[70 =
V. 20,4+Z2'0,=2'F

Ignoring the higher order small items,
Z' = (I1+eZ' + 272 V(2" +e2' + £22%)

Z" = iw(p 2,)iw — ik(C( 2+ Vy Zpi1)Vik - (ik)", (n=0,1,2, with 2y =1)
Z" = ik(C: (Vy i1+ 76))ik+iw(p i), (n=1,2, with 74 = 0)

v
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Displacement series expression

Set the lowest order expression like u® = uy+ O(€), the lowest order
motion equation has been defined by :

Z°=k-(C)-k—w*(p)I
With the same way, set uf = ug + u; + €%u + 0(&?),

Z2 € {Yzfnimlyzrznax}
22 =7"1e72' v 2702 2

min

72 =72 +eZ2' +e27° -2

With,

Z' = iwlp 2)iw—ik(C: Z})ik with Zy=1
Z' = ik(C: Yy Z)ik with Zy=1I
y =1+ ¢€ik(C : Vy6) + &*(ik(C : 765)ik — iw(p5))
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Dispersion relation

The motion equation for a simple two phase periodic structure :

gttt g MnZto) g ap

According for the periodic boundary conditions

5v*/4—v? +sin?(ak) =0

with
> _ (E) 4E|E> » Ei ..
wy = = , wi=—— (withi=1,2
" {p)  alpi+p2)(E1 +En) ap; ( )
_ L6E1 Exp1 02 _ Wo.\2, W02 02 = (E1+E2)(P1+P2)( )ZZ(K)Z
(Er+E2)(p1+p2)? w1’ wy’ 4E|E; wo
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The general dispersion curve
25 T T

=

5
T
L

Parameter - &

-
T
L

—06=1
—3=09
—08=07

0 . . .
0 0.5 1 15
Wavenumber - k

The width of the “bandgap” is largely influenced by the structure of the

composite :

2 —2+/1— &sin?(ak) 2+24/1— 8sin2(ak) 2 T
[t bl e 7 i Al Sk 7 < =
ve 0,\/ 5 J 5 VAR VIkl < 5

o
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Analysed solution

Rewrite the motion equation in the matrix form.

{IVI"ICIIV] —w?[p]} (] = [ ][a] =

Combine the continuity and periodic conditions for the displacement u and
stress 0, and note that [Z][i] =

[ +2]a] = [/]

The dispersion relation is defined by “ det{[# + 2]} =0".
Get the dispersion relation as in the work of Nassar H. et al. (20167) :

cos(2ka) = (VPiE1 +VpaFa)* P2y, _ (VPIEL = VP2E2)* p1 P2y )
4y/p1E1p2E> Ez 4/p1E1p2Er E

?Hussein Nassar, Q-C He, and Nicolas Auffray. “On asymptotic elastodynamic homogenization approaches for
periodic media”. In: Journal of the Mechanics and Physics of Solids 88 (2016), pp. 274-290.
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FEM solution

The weak form of the integral equation :
/Cs 6u)d—w/pu5udT—/f61”4*dT

Set Z,U, =0 to represent all the periodic boundary conditions. The
global motion equation is defined as :

K] 0 W2 M] O u| |F
0 2 0 O Uy| |0
The effective impedance has the following dispersion relation :

[Klg1onV = A[M]g105V

where the generalized eigenvalue A represents the square of the angular
frequency w? and V stands for the generalized eigenvectors.
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Two-layer example

The results of the finite element simulation and the analytical solution are

compared.

2000
1800
1600
1400
1200
1000

800

Normalized frequency w

600

400

200

Normalized dispersion curve

*
*

Reference
Mode 1 (FEM)
Mode 2 (FEM)

.
0.5 1
Normalized wavenumber k

15

The Young's modulus (Pa), E; = 3.0¢%, E; = 2.0e'!

The density (kg/m>): p1 = 1.5¢3,p; = 3.0¢3

The unit characteristic size [ = 5.0e3(m)
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Multi-layer example

Comparison with the results by Nemat-Nasser et Srivastava (2011?).

Angular frequency (Hz)

Angular frequency (Hz)

Angular frequency (Hz)

o 07

o-@

T s 2
Normalized wavenumber

86x =0.0001m

oo
e
o

e e T S

o o0

Angular frequency (Hz)

1 15 2
Normalized wavenumber

8x = 0.00005m

05

T 15 2
Normalized wavenumber

dx =0.00002m

25 T

1 15 2
Normalized wavenumber

dx =0.00001m

2Sia Nemat-Nasser et al. “Homogenization of periodic elastic composites and locally resonant sonic materials” .

In: Physical Review B 83.10 (2011)

. p. 104103.
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Conclusion

Conclusions

@ The influence of body force term on the asymptotic effective
impedance has been discussed;

@ The FEM results has been compared with the analytical results and
analysed the influence of mesh size on the numeric result;

@ Two higher order asymptotic expressions of the effective impedances
have been derived.

Works to be done
@ Verify the validity of the high-order effective impedance expressions.

@ Study the dynamic homogenization of the motion equation involving
the non-uniformly body force function.
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